Combinatorial Inference in Geometric Data Analysis (Chapman & Hall/crc Computer Science & Data Analysis)

個数:

Combinatorial Inference in Geometric Data Analysis (Chapman & Hall/crc Computer Science & Data Analysis)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 268 p.
  • 言語 ENG
  • 商品コード 9781032093734
  • DDC分類 515.9

Full Description

Geometric Data Analysis designates the approach of Multivariate Statistics that conceptualizes the set of observations as a Euclidean cloud of points. Combinatorial Inference in Geometric Data Analysis gives an overview of multidimensional statistical inference methods applicable to clouds of points that make no assumption on the process of generating data or distributions, and that are not based on random modelling but on permutation procedures recasting in a combinatorial framework.

It focuses particularly on the comparison of a group of observations to a reference population (combinatorial test) or to a reference value of a location parameter (geometric test), and on problems of homogeneity, that is the comparison of several groups for two basic designs. These methods involve the use of combinatorial procedures to build a reference set in which we place the data. The chosen test statistics lead to original extensions, such as the geometric interpretation of the observed level, and the construction of a compatibility region.

Features:


Defines precisely the object under study in the context of multidimensional procedures, that is clouds of points




Presents combinatorial tests and related computations with R and Coheris SPAD software




Includes four original case studies to illustrate application of the tests




Includes necessary mathematical background to ensure it is self-contained



This book is suitable for researchers and students of multivariate statistics, as well as applied researchers of various scientific disciplines. It could be used for a specialized course taught at either master or PhD level.

Contents

Euclidean Cloud. Geometric Typicality Test. Set-Theoretic Typicality Test. Homogeneity Tests. Mathematical Bases. Research Case Studies.

最近チェックした商品