Analysis of Integrated Data (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

個数:

Analysis of Integrated Data (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9781032092782
  • DDC分類 519.535

Full Description

The advent of "Big Data" has brought with it a rapid diversification of data sources, requiring analysis that accounts for the fact that these data have often been generated and recorded for different reasons. Data integration involves combining data residing in different sources to enable statistical inference, or to generate new statistical data for purposes that cannot be served by each source on its own. This can yield significant gains for scientific as well as commercial investigations.

However, valid analysis of such data should allow for the additional uncertainty due to entity ambiguity, whenever it is not possible to state with certainty that the integrated source is the target population of interest. Analysis of Integrated Data aims to provide a solid theoretical basis for this statistical analysis in three generic settings of entity ambiguity: statistical analysis of linked datasets that may contain linkage errors; datasets created by a data fusion process, where joint statistical information is simulated using the information in marginal data from non-overlapping sources; and estimation of target population size when target units are either partially or erroneously covered in each source.


Covers a range of topics under an overarching perspective of data integration.




Focuses on statistical uncertainty and inference issues arising from entity ambiguity.




Features state of the art methods for analysis of integrated data.




Identifies the important themes that will define future research and teaching in the statistical analysis of integrated data.



Analysis of Integrated Data is aimed primarily at researchers and methodologists interested in statistical methods for data from multiple sources, with a focus on data analysts in the social sciences, and in the public and private sectors.

Contents

1. Introduction - Ray Chambers 2. On secondary analysis of datasets that cannot be linked without errors - Li-Chun Zhang 3. Capture-recapture methods in the presence of linkage errors - Loredana di Congsiglio, Tiziana Tuoto, Li-Chun Zhang 4. An overview on uncertainty and estimation in statistical matching - Maruo Scanu, Pier Luigi Conti, Daniela Marella 5. Auxiliary variable selection in a statistical matching problem - Marcello D'Orazio, Marco Di Zio, Mauro Scanu 6. Minimal inference from incomplete 2 x 2-tables - Li-Chun Zhang, Raymond L. Chambers 7. Dual and multiple system estimation with fully and partially observed covariates - Van der Heijden et al. 8. Estimating population size in multiple record systems with uncertainty of state identification - Davide Di Cecco 9. Log-linear models of erroneous list data - Li-Chun Zhang 10. Sampling design and analysis using geo-referenced data - Danila Filipponi, Federica Piersimoni, Roberto Benedetti, Maria Michela Dickson, Giuseppe Espa, Diego Giuliani

最近チェックした商品