Bringing Bayesian Models to Life (Chapman & Hall/crc Applied Environmental Statistics)

個数:
  • ポイントキャンペーン

Bringing Bayesian Models to Life (Chapman & Hall/crc Applied Environmental Statistics)

  • ウェブストア価格 ¥15,029(本体¥13,663)
  • CRC Press(2021/06発売)
  • 外貨定価 US$ 67.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 680pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 592 p.
  • 言語 ENG
  • 商品コード 9781032092416
  • DDC分類 519.542

Full Description

Bringing Bayesian Models to Life empowers the reader to extend, enhance, and implement statistical models for ecological and environmental data analysis. We open the black box and show the reader how to connect modern statistical models to computer algorithms. These algorithms allow the user to fit models that answer their scientific questions without needing to rely on automated Bayesian software. We show how to handcraft statistical models that are useful in ecological and environmental science including: linear and generalized linear models, spatial and time series models, occupancy and capture-recapture models, animal movement models, spatio-temporal models, and integrated population-models.

Features:

R code implementing algorithms to fit Bayesian models using real and simulated data examples.

A comprehensive review of statistical models commonly used in ecological and environmental science.

Overview of Bayesian computational methods such as importance sampling, MCMC, and HMC.

Derivations of the necessary components to construct statistical algorithms from scratch.

Bringing Bayesian Models to Life contains a comprehensive treatment of models and associated algorithms for fitting the models to data. We provide detailed and annotated R code in each chapter and apply it to fit each model we present to either real or simulated data for instructional purposes. Our code shows how to create every result and figure in the book so that readers can use and modify it for their own analyses. We provide all code and data in an organized set of directories available at the authors' websites.

Contents

Background. Bayesian Models. Numerical Integration. Monte Carlo. Markov Chain Monte Carlo. Importance Sampling. Basic Models and Concepts. Bernoulli - Beta. Normal-Normal. Normal-Inverse Gamma. Normal-Normal-Inverse Gamma. Intermediate Models and Concepts. Mixture Models. Linear Regression. Posterior Prediction. Model Comparison. Regularization. Bayesian Model Averaging. Time Series Models. Spatial Models. Advanced Models and Concepts. Quantile Regression. Hierarchical Models.Binary Regression. Count Data Regression. Zero-Inflated Models. Occupancy Models. Abundance Models. Expert Models and Concepts. Integrated Population Models. Spatial Occupancy Models. Spatial Capture-Recapture Models. Spatio-Temporal Models. Hamiltonian Monte Carlo.

最近チェックした商品