Fundamentals of Data Science

個数:

Fundamentals of Data Science

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 282 p.
  • 言語 ENG
  • 商品コード 9781032079868
  • DDC分類 006.312

Full Description

Fundamentals of Data Science is designed for students, academicians and practitioners with a complete walkthrough right from the foundational groundwork required to outlining all the concepts, techniques and tools required to understand Data Science.

Data Science is an umbrella term for the non-traditional techniques and technologies that are required to collect, aggregate, process, and gain insights from massive datasets. This book offers all the processes, methodologies, various steps like data acquisition, pre-process, mining, prediction, and visualization tools for extracting insights from vast amounts of data by the use of various scientific methods, algorithms, and processes

Readers will learn the steps necessary to create the application with SQl, NoSQL, Python, R, Matlab, Octave and Tablue.

This book provides a stepwise approach to building solutions to data science applications right from understanding the fundamentals, performing data analytics to writing source code. All the concepts are discussed in simple English to help the community to become Data Scientist without much pre-requisite knowledge.

Features :




Simple strategies for developing statistical models that analyze data and detect patterns, trends, and relationships in data sets.



Complete roadmap to Data Science approach with dedicatedsections which includes Fundamentals, Methodology and Tools.



Focussed approach for learning and practice various Data Science Toolswith Sample code and examples for practice.



Information is presented in an accessible way for students, researchers and academicians and professionals.

Contents

Part-I Data Science Introduction. Chapter 1: Importance of Data Science. Chapter 2: Statistics and Probability. Chapter 3: Databases for Data Science. Part II Data Modelling and Analytics. Chapter 4: Data Science Methodology. Chapter 5: Data Science Methods and Machine learning. Chapter 6: Data Analytics and Text Mining. Part III: Platforms for Data Science. Chapter 7: Data Science Tool: Python. Chapter 8: Data Science Tool: R. Chapter 9: Data Science Tool: MATLAB. Chapter 10 : GNU Octave as a Data Science Tool. Chapter 11: Data Visualization using Tableau. Index.

最近チェックした商品