Handbook of Computational Social Science, Volume 2 : Data Science, Statistical Modelling, and Machine Learning Methods (European Association of Methodology Series)

個数:
電子版価格
¥12,305
  • 電子版あり

Handbook of Computational Social Science, Volume 2 : Data Science, Statistical Modelling, and Machine Learning Methods (European Association of Methodology Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 412 p.
  • 言語 ENG
  • 商品コード 9781032077703
  • DDC分類 300.727

Full Description

The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches.

The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. This second volume focuses on foundations and advances in data science, statistical modeling, and machine learning. It covers a range of key issues, including the management of big data in terms of record linkage, streaming, and missing data. Machine learning, agent-based and statistical modeling, as well as data quality in relation to digital trace and textual data, as well as probability, non-probability, and crowdsourced samples represent further foci. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions.

With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates, and researchers engaging with computational methods across the social sciences, as well as those within the scientific and engineering sectors.

Contents

Preface




Introduction to the Handbook of Computational Social Science
Uwe Engel, Anabel Quan-Haase, Sunny Xun Liu and Lars Lyberg

Section I. Data in CSS: Collection, Management, and Cleaning




A Brief History of APIs: Limitations and Opportunities for Online Research
Jakob Jünger




Application Programming Interfaces and Web Data For Social Research
Dominic Nyhuis




Web Data Mining: Collecting Textual Data from Web Pages Using R
Stefan Bosse, Lena Dahlhaus and Uwe Engel




Analyzing Data Streams for Social Scientists
Lianne Ippel, Maurits Kaptein and Jeroen Vermunt




Handling Missing Data in Large Data Bases
Martin Spiess and Thomas Augustin




A Primer on Probabilistic Record Linkage


Ted Enamorado




Reproducibility and Principled Data Processing
John McLevey, Pierson Browne and Tyler Crick

Section II. Data Quality in CSS Research




Applying a Total Error Framework for Digital Traces to Social Media Research
Indira Sen, Fabian Flöck, Katrin Weller, Bernd Weiß and Claudia Wagner




Crowdsourcing in Observational and Experimental Research
Camilla Zallot, Gabriele Paolacci, Jesse Chandler and Itay Sisso




Inference from Probability and Nonprobability Samples
Rebecca Andridge and Richard Valliant




Challenges of Online Non-Probability Surveys
Jelke Bethlehem

Section III. Statistical Modelling and Simulation




Large-scale Agent-based Simulation and Crowd Sensing with Mobile Agents
Stefan Bosse




Agent-based Modelling for Cultural Networks: Tagging by Artificial Intelligent Cultural Agents
Fernando Sancho-Caparrini and Juan Luis Suárez




Using Subgroup Discovery and Latent Growth Curve Modeling to Identify Unusual Developmental Trajectories
Axel Mayer, Christoph Kiefer, Benedikt Langenberg and Florian Lemmerich




Disaggregation via Gaussian Regression for Robust Analysis of Heterogeneous Data
Nazanin Alipourfard, Keith Burghardt and Kristina Lerman

Section IV: Machine Learning Methods




Machine Learning Methods for Computational Social Science
Richard D. De Veaux and Adam Eck




Principal Component Analysis
Andreas Pöge and Jost Reinecke




Unsupervised Methods: Clustering Methods
Johann Bacher, Andreas Pöge and Knut Wenzig




Text Mining and Topic Modeling
Raphael H. Heiberger and Sebastian Munoz-Najar Galvez




From Frequency Counts to Contextualized Word Embeddings: The Saussurean Turn in Automatic Content Analysis
Gregor Wiedemann and Cornelia Fedtke




Automated Video Analysis for Social Science Research

Dominic Nyhuis, Tobias Ringwald, Oliver Rittmann, Thomas Gschwend and Rainer Stiefelhagen

最近チェックした商品