Partial Differential Equations : Topics in Fourier Analysis (2ND)

個数:

Partial Differential Equations : Topics in Fourier Analysis (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 198 p.
  • 言語 ENG
  • 商品コード 9781032074092
  • DDC分類 515.2433

Full Description

Partial Differential Equations: Topics in Fourier Analysis, Second Edition explains how to use the Fourier transform and heuristic methods to obtain significant insight into the solutions of standard PDE models. It shows how this powerful approach is valuable in getting plausible answers that can then be justified by modern analysis.

Using Fourier analysis, the text constructs explicit formulas for solving PDEs governed by canonical operators related to the Laplacian on the Euclidean space. After presenting background material, it focuses on: Second-order equations governed by the Laplacian on Rn; the Hermite operator and corresponding equation; and the sub-Laplacian on the Heisenberg group

Designed for a one-semester course, this text provides a bridge between the standard PDE course for undergraduate students in science and engineering and the PDE course for graduate students in mathematics who are pursuing a research career in analysis. Through its coverage of fundamental examples of PDEs, the book prepares students for studying more advanced topics such as pseudo-differential operators. It also helps them appreciate PDEs as beautiful structures in analysis, rather than a bunch of isolated ad-hoc techniques.

New to the Second Edition




Three brand new chapters covering several topics in analysis not explored in the first edition
Complete revision of the text to correct errors, remove redundancies, and update outdated material
Expanded references and bibliography
New and revised exercises.

Contents

1. The Multi-Index Notation. 2. The Gamma Function. 3. Convolutions. 4. Fourier Transforms. 5. Tempered Distributions. 6. The Heat Kernel. 7. The Free Propagator. 8. The Newtonian Potential. 9. The Bessel Potential. 10. Global Hypoellipticity in the Schwartz Space. 11. The Poisson Kernel. 12. The Bessel-Poisson Kernel. 13. Wave Kernels. 14. The Heat Kernel of the Hermite Operator. 15. The Green Function of the Hermite Operator. 16. Global Regularity of the Hermite Operator. 17. The Heisenberg Group. 18. The Sub-Laplacian and the Twisted Laplacians. 19. Convolutions on the Heisenberg Group. 20. Wigner Transforms and Weyl Transforms. 21. Spectral Analysis of Twisted Laplacians. 22. Heat Kernels Related to the Heisenberg Group. 23. Green Functions Related to the Heisenberg Group. 24. Theta Functions and the Riemann Zeta-Function. 25. The Twisted Bi-Laplacian. 26. Complex Powers of the Twisted Bi-Laplacian. Bibliography. Index.

最近チェックした商品