Survival Analysis with Python

個数:

Survival Analysis with Python

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 84 p.
  • 言語 ENG
  • 商品コード 9781032073675
  • DDC分類 610.727

Full Description

Survival analysis uses statistics to calculate time to failure. Survival Analysis with Python takes a fresh look at this complex subject by explaining how to use the Python programming language to perform this type of analysis. As the subject itself is very mathematical and full of expressions and formulations, the book provides detailed explanations and examines practical implications. The book begins with an overview of the concepts underpinning statistical survival analysis. It then delves into




Parametric models with coverage of




Concept of maximum likelihood estimate (MLE) of a probability distribution parameter



MLE of the survival function



Common probability distributions and their analysis



Analysis of exponential distribution as a survival function



Analysis of Weibull distribution as a survival function



Derivation of Gumbel distribution as a survival function from Weibull




Non-parametric models including




Kaplan-Meier (KM) estimator, a derivation of expression using MLE



Fitting KM estimator with an example dataset, Python code and plotting curves



Greenwood's formula and its derivation




Models with covariates explaining




The concept of time shift and the accelerated failure time (AFT) model



Weibull-AFT model and derivation of parameters by MLE



Proportional Hazard (PH) model



Cox-PH model and Breslow's method



Significance of covariates



Selection of covariates



The Python lifelines library is used for coding examples. By mapping theory to practical examples featuring datasets, this book is a hands-on tutorial as well as a handy reference.

Contents

Chapter 1. Introduction Chapter 2. General Theory of Survival Analysis Chapter 3. Parametric Models Chapter 4. Nonparametric Models Chapter 5. Models with Covariates

最近チェックした商品