Algebraic Structures in Natural Language

個数:

Algebraic Structures in Natural Language

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 290 p.
  • 言語 ENG
  • 商品コード 9781032071046
  • DDC分類 401.93

Full Description

Algebraic Structures in Natural Language addresses a central problem in cognitive science concerning the learning procedures through which humans acquire and represent natural language. Until recently algebraic systems have dominated the study of natural language in formal and computational linguistics, AI, and the psychology of language, with linguistic knowledge seen as encoded in formal grammars, model theories, proof theories and other rule-driven devices. Recent work on deep learning has produced an increasingly powerful set of general learning mechanisms which do not apply rule-based algebraic models of representation. The success of deep learning in NLP has led some researchers to question the role of algebraic models in the study of human language acquisition and linguistic representation. Psychologists and cognitive scientists have also been exploring explanations of language evolution and language acquisition that rely on probabilistic methods, social interaction and information theory, rather than on formal models of grammar induction.

This book addresses the learning procedures through which humans acquire natural language, and the way in which they represent its properties. It brings together leading researchers from computational linguistics, psychology, behavioral science and mathematical linguistics to consider the significance of non-algebraic methods for the study of natural language. The text represents a wide spectrum of views, from the claim that algebraic systems are largely irrelevant to the contrary position that non-algebraic learning methods are engineering devices for efficiently identifying the patterns that underlying grammars and semantic models generate for natural language input. There are interesting and important perspectives that fall at intermediate points between these opposing approaches, and they may combine elements of both. It will appeal to researchers and advanced students in each of these fields, as well as to anyone who wants to learn more about the relationship between computational models and natural language.

Contents

1. On the Proper Role of Linguistically Oriented Deep Net Analysis in Linguistic Theorizing by Marco Baroni. 2. What Artificial Neural Networks Can Tell Us About Human Language Acquisition by Alex Warstadt and Samuel R. Bowman. 3. Grammar through Spontaneous Order by Nick Chater and Morten H. Christiansen. 4. Language is Acquired in Interaction by Eve V. Clark. 5. Why Algebraic Systems aren't Sufficient for Syntax by Ben Ambridge. 6. Learning Syntactic Structures from String Input by Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu, Peng Qian, and Roger Levy. 7. Analyzing Discourse Knowledge in Pre-Trained LMs by Sharid Lo'aiciga. 8. Linguistically Guided Multilingual NLP by Olga Majewska, Ivan Vuli'c, and Anna Korhonen. 9. Word Embeddings are Word Story Embeddings (and that's fine) by Katrin Erk and Gabriella Chronis. 10. Algebra and Language: Reasons for (Dis)content by Lawrence S. Moss. 11. Unitary Recurrent Networks by Jean-Philippe Bernardy and Shalom Lappin.

最近チェックした商品