Handbook of Moth-Flame Optimization Algorithm : Variants, Hybrids, Improvements, and Applications (Advances in Metaheuristics)

個数:

Handbook of Moth-Flame Optimization Algorithm : Variants, Hybrids, Improvements, and Applications (Advances in Metaheuristics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 332 p.
  • 言語 ENG
  • 商品コード 9781032070926
  • DDC分類 006.382

Full Description

Moth-Flame Optimization algorithm is an emerging meta-heuristic and has been widely used in both science and industry. Solving optimization problem using this algorithm requires addressing a number of challenges, including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters.

Handbook of Moth-Flame Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides an in-depth analysis of this algorithm and the existing methods in the literature to cope with such challenges.

Key Features:

Reviews the literature of the Moth-Flame Optimization algorithm
Provides an in-depth analysis of equations, mathematical models, and mechanisms of the Moth-Flame Optimization algorithm
Proposes different variants of the Moth-Flame Optimization algorithm to solve binary, multi-objective, noisy, dynamic, and combinatorial optimization problems
Demonstrates how to design, develop, and test different hybrids of Moth-Flame Optimization algorithm
Introduces several applications areas of the Moth-Flame Optimization algorithm

This handbook will interest researchers in evolutionary computation and meta-heuristics and those who are interested in applying Moth-Flame Optimization algorithm and swarm intelligence methods overall to different application areas.

Contents

Section I Moth-Flame Optimization Algorithm for Different Optimization Problems

Chapter 1 ◾ Optimization and Meta-heuristics

Seyedali Mirjalili

Chapter 2 ◾ Moth-Flame Optimization Algorithm for Feature Selection: A Review and Future Trends

Qasem Al-Tashi, Seyedali Mirjalili, Jia Wu, Said Jadid Abdulkadir, Tareq M. Shami, Nima Khodadadi, and Alawi Alqushaibi

Chapter 3 ◾ An Efficient Binary Moth-Flame Optimization Algorithm with Cauchy Mutation for Solving the Graph Coloring Problem

Yass ine Meraihi, Asm a Benmess aoud Gabis, and Seyedali Mirjalili

Chapter 4 ◾ Evolving Deep Neural Network by Customized Moth-Flame Optimization Algorithm for Underwater Targets Recognition

Mohamm ad Khishe, Mokhtar Mohamm adi, Tarik A. Rashid, Hoger Mahmud, and Seyedali Mirjalili

Section II Variants of Moth-Flame Optimization Algorithm

Chapter 5 ◾ Multi-objective Moth-Flame Optimization Algorithm for Engineering Problems

Nima Khodadadi, Seyed Mohamm ad Mirjalili, and Seyedali Mirjalili

Chapter 6 ◾ Accelerating Optimization Using Vectorized Moth-Flame Optimizer (vMFO)

AmirPouya Hemm asian, Kazem Meidani, Seyedali Mirjalili, and Amir Barati Farimani

Chapter 7 ◾ A Modified Moth-Flame Optimization Algorithm for Image Segmentation

Sanjoy Chakraborty, Sukanta Nama, Apu Kumar Saha, and Seyedali Mirjalili

Chapter 8 ◾ Moth-Flame Optimization-Based Deep

Feature Selection for Cardiovascular Disease Detection Using ECG Signal

Arindam Majee, Shreya Bisw as, Somnath Chatterjee, Shibaprasad Sen, Seyedali Mirjalili, and Ram Sarkar

Section III Hybrids and Improvements of Moth-Flame Optimization Algorithm

Chapter 9 ◾ Hybrid Moth-Flame Optimization Algorithm with Slime Mold Algorithm for Global Optimization

Sukanta Nama, Sanjoy Chakraborty, Apu Kumar Saha, and Seyedali Mirjalili

Chapter 10 ◾ Hybrid Aquila Optimizer with Moth-Flame Optimization Algorithm for Global Optimization

Laith Abualigah, Seyedali Mirjalili, Mohamed Abd Elaziz, Heming Jia, Canan Batur Şahin, Ala' Khalifeh, and Amir H. Gandomi

Chapter 11 ◾ Boosting Moth-Flame Optimization Algorithm by Arithmetic Optimization Algorithm for Data Clustering

Laith Abualigah, Seyedali Mirjalili, Mohamm ed Otair, Putra Sumari, Mohamed Abd Elaziz, Heming Jia, and Amir H. Gandomi

Section IV Applications of Moth-Flame Optimization Algorithm

Chapter 12 ◾ Moth-Flame Optimization Algorithm, Arithmetic Optimization Algorithm, Aquila Optimizer, Gray Wolf Optimizer, and Sine Cosine Algorithm: A Comparative Analysis Using Multilevel Thresholding Image Segmentation Problems

Laith Abualigah, Nada Khalil Al-Okbi, Seyedali Mirjalili, Mohamm ad Alshinwan, Husam Al Hamad, Ahmad M. Khasawneh, Waheeb Abu-Ulbeh, Mohamed Abd Elaziz, Heming Jia, and Amir H. Gandomi

Chapter 13 ◾ Optimal Design of Truss Structures with Continuous Variable Using Moth-Flame Optimization

Nima Khodadadi, Seyed Mohamm ad Mirjalili, and Seyedali Mirjalili

Chapter 14 ◾ Deep Feature Selection Using Moth-Flame Optimization for Facial Expression Recognition from Thermal Images

Ankan Bhattacharyya, Soumyajit Saha, Shibaprasad Sen, Seyedali Mirjalili, and Ram Sarkar

Chapter 15 ◾ Design Optimization of Photonic Crystal Filter Using Moth-Flame Optimization Algorithm

Seyed Mohamm ad Mirjalili, Somayeh Davar, Nima Khodadadi, and Seyedali Mirjalili

最近チェックした商品