Predictive Modelling for Football Analytics (Chapman & Hall/crc Data Science Series)

個数:
  • 予約

Predictive Modelling for Football Analytics (Chapman & Hall/crc Data Science Series)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9781032030647

Full Description

Predictive Modelling for Football Analytics discusses the most well-known models and the main computational tools for the football analytics domain. It further introduces the footBayes R package that accompanies the reader through all the examples proposed in the book. It aims to be both a practical guide and a theoretical foundation for students, data scientists, sports analysts, and football professionals who wish to understand and apply predictive modelling in a football context.

• Discusses various modelling strategies and predictive tools related to football analytics

• Introduces algorithms and computational tools to check the models, make predictions, and visualize the final results

• Showcases some guided examples through the use of the footBayes R package available on CRAN

• Walks the reader through the full pipeline: from data collection and preprocessing, through exploratory analysis and feature engineering, to advanced modelling techniques and evaluation

• Bridges the gap between raw football data and actionable insights

This text is primarily for senior undergraduate, graduate students, and academic researchers in the field of mathematics, statistics, and computer science willing to learn about the football analytics domain. Although technical in nature, the book is designed to be accessible to readers with a background in statistics, programming, or a strong interest in sports analytics. It is well-suited for use in academic courses on sports analytics, data science projects, or professional development within football clubs, agencies, and media organizations.

Contents

1. A short introduction to football analytics. 2. Methods, Algorithms and Computational Tools. 3. Tournament and game prediction via simulation. 4. Implementation of basic models in R via footBayes. 5. Additional statistical models for the scores. 6. Modelling international matches: the Euro and World Cups experience. 7. Compare statistical models' performance with the bookmakers.

最近チェックした商品