Deep Learning : A Comprehensive Guide

個数:

Deep Learning : A Comprehensive Guide

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 290 p.
  • 言語 ENG
  • 商品コード 9781032028828
  • DDC分類 006.31

Full Description

Deep Learning: A Comprehensive Guide provides comprehensive coverage of Deep Learning (DL) and Machine Learning (ML) concepts. DL and ML are the most sought-after domains, requiring a deep understanding - and this book gives no less than that. This book enables the reader to build innovative and useful applications based on ML and DL. Starting with the basics of neural networks, and continuing through the architecture of various types of CNNs, RNNs, LSTM, and more till the end of the book, each and every topic is given the utmost care and shaped professionally and comprehensively.

Key Features




Includes the smooth transition from ML concepts to DL concepts



Line-by-line explanations have been provided for all the coding-based examples



Includes a lot of real-time examples and interview questions that will prepare the reader to take up a job in ML/DL right away



Even a person with a non-computer-science background can benefit from this book by following the theory, examples, case studies, and code snippets



Every chapter starts with the objective and ends with a set of quiz questions to test the reader's understanding



Includes references to the related YouTube videos that provide additional guidance

AI is a domain for everyone. This book is targeted toward everyone irrespective of their field of specialization. Graduates and researchers in deep learning will find this book useful.

Contents

1. Introduction to Deep Learning. 2. The Tools and Prerequisites. 3. Machine Learning: The Fundamentals 4. The Deep Learning Framework. 5. CNN- Convolutional Neural Networks - A Complete Understanding. 6. CNN Architectures - An Evolution 7. Recurrent Neural Networks. 8. Autoencoders. 9. Generative Models. 10. Transfer Learning. 11. Intel OpenVino - A Must Know Deep Learning Toolkit. 12. Interview Questions and Answers.

最近チェックした商品