Techniques for Designing and Analyzing Algorithms (Chapman & Hall/crc Cryptography and Network Security Series)

個数:

Techniques for Designing and Analyzing Algorithms (Chapman & Hall/crc Cryptography and Network Security Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 430 p.
  • 言語 ENG
  • 商品コード 9781032024103
  • DDC分類 518.1

Full Description

Techniques for Designing and Analyzing Algorithms

Design and analysis of algorithms can be a difficult subject for students due to its sometimes-abstract nature and its use of a wide variety of mathematical tools. Here the author, an experienced and successful textbook writer, makes the subject as straightforward as possible in an up-to-date textbook incorporating various new developments appropriate for an introductory course.

This text presents the main techniques of algorithm design, namely, divide-and-conquer algorithms, greedy algorithms, dynamic programming algorithms, and backtracking. Graph algorithms are studied in detail, and a careful treatment of the theory of NP-completeness is presented.

In addition, the text includes useful introductory material on mathematical background including order notation, algorithm analysis and reductions, and basic data structures. This will serve as a useful review and reference for students who have covered this material in a previous course.

Features




The first three chapters provide a mathematical review, basic algorithm analysis, and data structures



Detailed pseudocode descriptions of the algorithms along with illustrative algorithms are included



Proofs of correctness of algorithms are included when appropriate



The book presents a suitable amount of mathematical rigor

After reading and understanding the material in this book, students will be able to apply the basic design principles to various real-world problems that they may encounter in their future professional careers.

Contents

1. Introduction and Mathematical Background. 1.1. Algorithms and Programs. 1.2. Definitions and Terminology. 1.3. Order Notation. 1.4. Mathematical Formulae. 1.5. Probability Theory and Random Variables. 1.6. Notes and References. Exercises. 2. Algorithm Analysis and Reductions. 2.1. Loop Analysis Techniques. 2.2. Algorithms for the 3SUM Problem. 2.3. Reductions. 2.4. Exact Analysis. 2.5. Notes and References. Exercises. 3. Data Structures. 3.1. Abstract Data Types and Data Structures. 3.2. Arrays, Linked Lists and Sets. 3.3. Stacks and Queues. 3.4. Priority Queues and Heaps. 3.6. Hash Tables. 3.7. Notes and References. Exercises. 4. Divide-and-Conquer Algorithms. 4.1. Recurrence Relations. 4.2. The Master Theorem. 4.3. Divide-and-Conquer Design Strategy. 4.4. Divide-and-Conquer Recurrence Relations. 4.5. Binary Search. 4.6. Non-dominated Points. 4.7. Stock Profits. 4.8. Closest Pair. 4.9. Multiprecision Multiplication. 4.10. Modular Exponentiation. 4.11. Matrix Multiplication. 4.12. QuickSort. 4.13. Selection and Median. 4.14. Notes and References. Exercises. 5. Greedy Algorithms. 5.1. Optimization Problems. 5.2. Greedy Design Strategy. 5.3. Interval Selection. 5.4. Interval Coloring. 5.5. Wireless Access Points. 5.6. A House Construction Problem. 5.7. Knapsack. 5.8. Coin Changing. 5.9. Multiprocessor Scheduling. 5.10. Stable Matching. 5.11. Notes and References. Exercises. 6 Dynamic Programming Algorithms. 6.1. Fibonacci Numbers. 6.2. Design Strategy. 6.3. Treasure Hunt. 6.4. 0-1 Knapsack. 6.5. Rod Cutting. 6.6. Coin Changing. 6.7. Longest Common Subsequence. 6.8. Minimum Length Triangulation. 6.9. Memoization. 6.10. Notes and References. Exercises. 7. Graph Algorithms. 7.1. Graphs. 7.2. Breadth-first Search. 7.3. Directed Graphs. 7.4. Depth-first Search. 7.5. Strongly Connected Components. 7.6. Eulerian Circuits. 7.7. Minimum Spanning Trees. 7.8. Single Source Shortest Paths. 7.9. All-Pairs Shortest Paths. 7.10. Notes and References. Exercises. 8. Backtracking Algorithms. 8.1. Introduction. 8.2. Generating all Cliques. 8.3. Sudoku. 8.4. Pruning and Bounding Functions. 8.5. 0-1 Knapsack Problem. 8.6. Traveling Salesperson Problem. 8.7. Branch-and-bound. 8.8. Notes and References. Exercises. 9. Intractability and Undecidability. 9.1. Decision Problems and the Complexity Class P. 9.2. Polynomial-time Turing Reductions. 9.3. The Complexity Class NP. 9.4. Polynomial Transformations. 9.5. NP-completeness. 9.6. Proving Problems NP-complete. 9.7. NP-hard Problems. 9.8. Approximation Algorithms. 9.9. Undecidability. 9.10. The Complexity Class EXPTIME. 9.11. Notes and References. Exercises. Bibliography. Index.

最近チェックした商品