社会科学のためのベイズ統計学 第2巻:生産性を上げるには<br>Bayesian Social Science Statistics: Volume 2 : Getting Productive (Elements in Quantitative and Computational Methods for the Social Sciences)

個数:
  • 予約

社会科学のためのベイズ統計学 第2巻:生産性を上げるには
Bayesian Social Science Statistics: Volume 2 : Getting Productive (Elements in Quantitative and Computational Methods for the Social Sciences)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 75 p.
  • 言語 ENG
  • 商品コード 9781009598446

Full Description

This Element introduces the basics of Bayesian regression modeling using modern computational tools. This Element only assumes that the reader has taken a basic statistics course and has seen Bayesian inference at the introductory level of Gill and Bao (2024). Some matrix algebra knowledge is assumed but the authors walk carefully through the necessary structures at the start of this Element. At the end of the process readers will fully understand how Bayesian regression models are developed and estimated, including linear and nonlinear versions. The sections cover theoretical principles and real-world applications in order to provide motivation and intuition. Because Bayesian methods are intricately tied to software, code in R and Python is provided throughout.

Contents

1. Introduction: the purpose and scope of this element; 2. A review of Bayesian principles and inference; 3. Monte Carlo tools for computational power; 4. A simple introduction to the mathematics of Markov Chains; 5. Markov Chain Monte Carlo for estimating Bayesian models; 6. Basic Bayesian regression models; 7. Nonlinear Bayesian regression models; 8. Model evaluation and mechanical issues with MCMC estimation; 9. Final remarks; References.

最近チェックした商品