The Theory of Countable Borel Equivalence Relations (Cambridge Tracts in Mathematics)

個数:

The Theory of Countable Borel Equivalence Relations (Cambridge Tracts in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 174 p.
  • 言語 ENG
  • 商品コード 9781009562294
  • DDC分類 511.322

Full Description

The theory of definable equivalence relations has been a vibrant area of research in descriptive set theory for the past three decades. It serves as a foundation of a theory of complexity of classification problems in mathematics and is further motivated by the study of group actions in a descriptive, topological, or measure-theoretic context. A key part of this theory is concerned with the structure of countable Borel equivalence relations. These are exactly the equivalence relations generated by Borel actions of countable discrete groups and this introduces important connections with group theory, dynamical systems, and operator algebras. This text surveys the state of the art in the theory of countable Borel equivalence relations and delineates its future directions and challenges. It gives beginning graduate students and researchers a bird's-eye view of the subject, with detailed references to the extensive literature provided for further study.

Contents

1. Equivalence relations and reductions; 2. Countable Borel equivalence relations; 3. Essentially countable relations; 4. Invariant and quasi-invariant measures; 5. Smoothness, $\mathbf{E}_0$ and $\mathbf{E}_\infty$; 6. Rigidity and incomparability; 7. Hyperfiniteness; 8. Amenability; 9. Treeability; 10. Freeness; 11. Universality; 12. The poset of bireducibility types; 13. Structurability; 14. Topological realizations; 15. A universal space for actions and equivalence relations; 16. Open problems; References; List of Notation; Subject Index.

最近チェックした商品