Polygraphs: from Rewriting to Higher Categories (London Mathematical Society Lecture Note Series)

個数:

Polygraphs: from Rewriting to Higher Categories (London Mathematical Society Lecture Note Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 666 p.
  • 言語 ENG
  • 商品コード 9781009498982
  • DDC分類 514.2

Full Description

This is the first book to revisit the theory of rewriting in the context of strict higher categories, through the unified approach provided by polygraphs, and put it in the context of homotopical algebra. The first half explores the theory of polygraphs in low dimensions and its applications to the computation of the coherence of algebraic structures. Illustrated with algorithmic computations on algebraic structures, the only prerequisite in this section is basic category theory. The theory is introduced step-by-step, with detailed proofs. The second half introduces and studies the general notion of n-polygraph, before addressing the homotopy theory of these polygraphs. It constructs the folk model structure on the category on strict higher categories and exhibits polygraphs as cofibrant objects. This allows the formulation of higher-dimensional generalizations of the coherence results developed in the first half. Graduate students and researchers in mathematics and computer science will find this work invaluable.

Contents

Part I. Fundamentals of Rewriting: 1. Abstract rewriting and one-dimensional polygraphs; 2. Two-dimensional polygraphs; 3. Operations on presentations; 4. String rewriting and 2-polygraphs; 5. Tietze transformations and completion; 6. Linear rewriting; Part II. Coherent Presentations: 7. Coherence by convergence; 8. Categories of finite derivation type; 9. Homological syzygies and confluence; Part III. Diagram Rewriting: 10. Three-dimensional polygraphs; 11. Termination of 3-polygraphs; 12. Coherent presentations of 2-categories; 13. Term rewriting systems; Part IV. Polygraphs: 14. Higher categories; 15. Polygraphs; 16. Properties of the category of 푛-polygraphs; 17. A catalogue of 푛-polygraphs; 18. Generalized polygraphs; Part V. Homotopy Theory of Polygraphs; 19. Polygraphic resolutions; 20. Towards the folk model structure; 21. The folk model structure; 22. Homology of 휔-categories; 23. Resolutions by (휔, 1)-polygraphs; Appendix A. A catalogue of 2-polygraphs; Appendix B. Examples of coherent presentations of monoids; Appendix C. A catalogue of 3-polygraphs; Appendix D. A syntactic description of free 푛-categories; Appendix E. Complexes and homology; Appendix F. Homology of categories; Appendix G. Locally presentable categories; Appendix H. Model categories; References; Index of notations; Index of terminology.Part I. Fundamentals of Rewriting: 1. Abstract rewriting and one-dimensional polygraphs; 2. Two-dimensional polygraphs; 3. Operations on presentations; 4. String rewriting and 2-polygraphs; 5. Tietze transformations and completion; 6. Linear rewriting; Part II. Coherent Presentations: 7. Coherence by convergence; 8. Categories of finite derivation type; 9. Homological syzygies and confluence; Part III. Diagram Rewriting: 10. Three-dimensional polygraphs; 11. Termination of 3-polygraphs; 12. Coherent presentations of 2-categories; 13. Term rewriting systems; Part IV. Polygraphs: 14. Higher categories; 15. Polygraphs; 16. Properties of the category of 푛-polygraphs; 17. A catalogue of 푛-polygraphs; 18. Generalized polygraphs; Part V. Homotopy Theory of Polygraphs: 19. Polygraphic resolutions; 20. Towards the folk model structure; 21. The folk model structure; 22. Homology of 휔-categories; 23. Resolutions by (휔, 1)-polygraphs; Appendix A. A catalogue of 2-polygraphs; Appendix B. Examples of coherent presentations of monoids; Appendix C. A catalogue of 3-polygraphs; Appendix D. A syntactic description of free 푛-categories; Appendix E. Complexes and homology; Appendix F. Homology of categories; Appendix G. Locally presentable categories; Appendix H. Model categories; References; Index of notations; Index of terminology.

最近チェックした商品