Oriented Matroids (Cambridge Studies in Advanced Mathematics)

個数:

Oriented Matroids (Cambridge Studies in Advanced Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 333 p.
  • 言語 ENG
  • 商品コード 9781009494113
  • DDC分類 511.6

Full Description

Oriented matroids appear throughout discrete geometry, with applications in algebra, topology, physics, and data analysis. This introduction to oriented matroids is intended for graduate students, scientists wanting to apply oriented matroids, and researchers in pure mathematics. The presentation is geometrically motivated and largely self-contained, and no knowledge of matroid theory is assumed. Beginning with geometric motivation grounded in linear algebra, the first chapters prove the major cryptomorphisms and the Topological Representation Theorem. From there the book uses basic topology to go directly from geometric intuition to rigorous discussion, avoiding the need for wider background knowledge. Topics include strong and weak maps, localizations and extensions, the Euclidean property and non-Euclidean properties, the Universality Theorem, convex polytopes, and triangulations. Themes that run throughout include the interplay between combinatorics, geometry, and topology, and the idea of oriented matroids as analogs to vector spaces over the real numbers and how this analogy plays out topologically.

Contents

1. Realizable oriented matroids; 2. Oriented matroids; 3. Elementary operations and properties; 4. The topological representation theorem; 5. Strong maps and weak maps; 6. Single-element extensions; 7. The universality theorem; 8. Oriented matroid polytopes; 9. Subdivisions and triangulations; 10. Spaces of oriented matroids; 11. Hints on selected exercises; References; Index.

最近チェックした商品