Partially Observed Markov Decision Processes : Filtering, Learning and Controlled Sensing (2ND)

個数:

Partially Observed Markov Decision Processes : Filtering, Learning and Controlled Sensing (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 651 p.
  • 言語 ENG
  • 商品コード 9781009449434
  • DDC分類 519.233

Full Description

Covering formulation, algorithms and structural results and linking theory to real-world applications in controlled sensing (including social learning, adaptive radars and sequential detection), this book focuses on the conceptual foundations of partially observed Markov decision processes (POMDPs). It emphasizes structural results in stochastic dynamic programming, enabling graduate students and researchers in engineering, operations research, and economics to understand the underlying unifying themes without getting weighed down by mathematical technicalities. In light of major advances in machine learning over the past decade, this edition includes a new Part V on inverse reinforcement learning as well as a new chapter on non-parametric Bayesian inference (for Dirichlet processes and Gaussian processes), variational Bayes and conformal prediction.

Contents

Preface to revised edition; Notation; 1. Introduction; I. Stochastic Models and Bayesian Filtering: 2. Stochastic state space model; 3. Optimal filtering; 4. Algorithms for maximum likelihood parameter estimation; 5. Multi-agent sensing: social learning and data incest; 6. Nonparametric Bayesian inference; II. POMDPs: Models and Applications: 7. Fully observed Markov decision processes; 8. Partially observed Markov decision processes; 9. POMDPs in controlled sensing and sensor scheduling; III. POMDP Structural Results: 10. Structural results for Markov decision processes; 11. Structural results for optimal filters; 12. Monotonicity of value function for POMDPs; 13. Structural results for stopping-time POMDPs; 14. Stopping-Time POMDPs for quickest detection; 15. Myopic policy bounds for POMDPs and sensitivity to model parameters; IV. Stochastic Gradient Algorithms and Reinforcement Learning: 16. Stochastic optimization and gradient estimation; 17. Reinforcement learning; 18. Stochastic gradient algorithms: convergence analysis; 19. Discrete stochastic optimization; V. Inverse Reinforcement Learning: 20. Revealed preferences for inverse reinforcement learning; 21. Bayesian inverse reinforcement learning; Appendix A. Short primer on stochastic stimulation; Appendix B. Continuous-time HMM filters; Appendix C. Discrete-time Martingales; Appendix D. Markov processes; Appendix E. Some limit theorems in statistics; Appendix F. Summary of POMDP algorithms; Bibliography; Index.

最近チェックした商品