Financial Data Science

個数:

Financial Data Science

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 414 p.
  • 言語 ENG
  • 商品コード 9781009432245
  • DDC分類 332.028557

Full Description

Confidently analyze, interpret and act on financial data with this practical introduction to the fundamentals of financial data science. Master the fundamentals with step-by-step introductions to core topics will equip you with a solid foundation for applying data science techniques to real-world complex financial problems. Extract meaningful insights as you learn how to use data to lead informed, data-driven decisions, with over 50 examples and case studies and hands-on Matlab and Python code. Explore cutting-edge techniques and tools in machine learning for financial data analysis, including deep learning and natural language processing. Accessible to readers without a specialized background in finance or machine learning, and including coverage of data representation and visualization, data models and estimation, principal component analysis, clustering methods, optimization tools, mean/variance portfolio optimization and financial networks, this is the ideal introduction for financial services professionals, and graduate students in finance and data science.

Contents

1. Preface; 2. Data representation and visualization; 3. Data models and estimation; 4. Principle component analysis; 5. Clustering methods; 6. Linear regression models; 7. Linear classifers; 8. Nonlinear classifiers and kernel methods; 9. Neural networks and deep learning; 10. Optimization tools; 11. Mean/variance portfolio optimization; 12. Beyond the mean/variance model; 13. Financial networks; 14. Text analytics; Index.

最近チェックした商品