Machine Learning in Astronomy (IAU S368) : Possibilities and Pitfalls (Proceedings of the International Astronomical Union Symposia and Colloquia)

個数:

Machine Learning in Astronomy (IAU S368) : Possibilities and Pitfalls (Proceedings of the International Astronomical Union Symposia and Colloquia)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 200 p.
  • 言語 ENG
  • 商品コード 9781009345194
  • DDC分類 522.8563

Full Description

Today's astronomical observatories are generating more data than ever, from surveys to deep images. Machine learning methods can be a powerful tool to harness the full potential of these new observatories, as well as large archives that have accumulated. However, users should beware of common pitfalls, including bias in data sets and overfitting. IAU Symposium 368 addresses graduate students, teachers and professional astronomers who would like to leverage machine learning to unlock these huge volumes of data. Researchers pushing the frontiers of these methods share best practices in applied machine learning. While this volume is focused on astronomy applications, the methodological insights provided are relevant to all data-rich fields. Machine learning novices and expert users will find and benefit from these fresh new insights.

Contents

Enhancing exoplanet surveys via physics-informed machine earning Eric Ford; How do we design data sets for machine learning in astronomy? Renee Hlozek; Deep machine learning in cosmology: Evolution or revolution? Ofer Lahav; An astronomers guide to machine learning Sara Webb; Panel discussion: practical problem solving for machine learning David Parkinson; Panel discussion: methodology for fusion of large datasets Kai Polsterer; The entropy of galaxy spectra Ignacio Ferreras; Unsupervised classification: a necessary step for deep learning? Didier Fraix-Burnet; Spectral identification and classification of dusty stellar sources using spectroscopic and multiwavelength observations through machine learning Sepideh Ghaziasgar; Simulating transient burst noise with gengli Melissa Lopez; Detecting complex sources in large surveys using an apparent complexity measure David Parkinson; Machine learning in the study of star clusters with Gaia EDR3 Priya Shah; Assessing the quality of massive spectroscopic surveys with unsupervised machine learning John Suárez-Pérez; Neural networks for meteorite and meteor recognition Aisha Alowais; Unsupervised clustering visualisation tool for Gaia DR3 Marco Alvarez Gonzalez; Kinematic Planetary Signature Finder (KPSFinder): Convolutional neural network-based tool to search for exoplanets in ALMA data Jaehan Bae; Predicting physical parameters of Cepheid and RR Lyrae variables in an instant with machine learning Anupam Bhardwaj; Bayesian deconvolution of a rotating spectral line profile to a non-rotating one Michel Curé; A short study on the representation of gravitational waves data for convolutional neural network Margherita Grespan; Search for microlensing signature in gravitational waves from binary black hole events Kyungmin Kim; Deep learning and numerical simulations to infer the evolution of MaNGA galaxies Johan Knapen; Data pre-extraction for better classification of galaxy mergers William Pearson; Stellar spectra classification and clustering using deep learning Tomasz Różański; Is GMM effective in membership determination of open clusters? Priya Shah; Deep radio image segmentation Hattie Stewart; Computational techniques for high energy astrophysics and medical image processing Nicolás Vásquez; Deep learning proves to be an effective tool for detecting previously undiscovered exoplanets in Kepler data Amelia Yu.

最近チェックした商品