データからの推論と学習(テキスト・全3巻)第3巻:学習編<br>Inference and Learning from Data: Volume 3 : Learning

個数:
  • ポイントキャンペーン

データからの推論と学習(テキスト・全3巻)第3巻:学習編
Inference and Learning from Data: Volume 3 : Learning

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 990 p.
  • 言語 ENG
  • 商品コード 9781009218283
  • DDC分類 519.54

Full Description

This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This final volume, Learning, builds on the foundational topics established in volume I to provide a thorough introduction to learning methods, addressing techniques such as least-squares methods, regularization, online learning, kernel methods, feedforward and recurrent neural networks, meta-learning, and adversarial attacks. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 350 end-of-chapter problems (including complete solutions for instructors), 280 figures, 100 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Foundations and Inference, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, data and inference.

Contents

Preface; Notation; 50. Least-squares problems; 51. Regularization; 52. Nearest-neighbor rule; 53. Self-organizing maps; 54. Decision trees; 55. Naive Bayes classifier; 56. Linear discriminant analysis; 57. Principal component analysis; 58. Dictionary learning; 59. Logistic regression; 60. Perceptron; 61. Support vector machines; 62. Bagging and boosting; 63. Kernel methods; 64. Generalization theory; 65. Feedforward neural networks; 66. Deep belief networks; 67. Convolutional networks; 68. Generative networks; 69. Recurrent networks; 70. Explainable learning; 71. Adversarial attacks; 72. Meta learning; Author index; Subject index.

最近チェックした商品