Number Theory : Concepts and Problems

個数:

Number Theory : Concepts and Problems

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 686 p.
  • 言語 ENG
  • 商品コード 9780988562202
  • DDC分類 512.7

Full Description

Challenge your problem-solving aptitude in number theory with powerful problems that have concrete examples which reflect the potential and impact of theoretical results. Each chapter focuses on a fundamental concept or result, reinforced by each of the subsections, with scores of challenging problems that allow you to comprehend number theory like never before. All students and coaches wishing to excel in math competitions will benefit from this book as will mathematicians and adults who enjoy interesting mathematics.

Contents

Foreword
1 Introduction
2 Divisibility
2.1 Basic properties
2.1.1 Divisibility and congruences
2.1.2 Divisibility and order relation
2.2 Induction and binomial coefficients
2.2.1 Proving divisibility by induction
2.2.2 Arithmetic of binomial coefficients
2.2.3 Derivatives and finite differences
2.2.4 The binomial formula
2.3 Euclidean division
2.3.1 The Euclidean division
2.3.2 Combinatorial arguments and complete residue systems
2.4 Problems for practice
3 GCD and LCM
3.1 Bézout's theorem and Gauss' lemma
3.1.1 Bézout's theorem and the Euclidean algorithm
3.1.2 Relatively prime numbers
3.1.3 Inverse modulo n and Gauss' lemma
3.2 Applications to diophantine equations and approximations
3.2.1 Linear diophantine equations
3.2.2 Pythagorean triples
3.2.3 The rational root theorem
3.2.4 Farey fractions and Pell's equation
3.3 Least common multiple
3.4 Problems for practice
4 The fundamental theorem of arithmetic
4.1 Composite numbers
4.2 The fundamental theorem of arithmetic
4.2.1 The theorem and its first consequences
4.2.2 The smallest and largest prime divisor
4.2.3 Combinatorial number theory
4.3 Infinitude of primes
4.3.1 Looking for primes in classical sequences
4.3.2 Euclid's argument
4.3.3 Euler's and Bonse's inequalities
4.4 Arithmetic functions
4.4.1 Classical arithmetic functions
4.4.2 Multiplicative functions
4.4.3 Euler's phi function
4.4.4 The Möbius function and its applications
4.4.5 Application to squarefree numbers
4.5 Problems for practice
5 Congruences involving prime numbers
5.1 Fermat's little theorem
5.1.1 Fermat's little theorem and (pseudo-)primality
5.1.2 Some concrete examples
5.1.3 Application to primes of the form 4k + 3 and 3k + 2
5.2 Wilson's theorem
5.2.1 Wilson's theorem as criterion of primality
5.2.2 Application to sums of two squares
5.3 Lagrange's theorem and applications
5.3.1 The number of solutions of polynomial congruences
5.3.2 The congruence xd _ 1 (mod p)
5.3.3 The Chevalley-Warning theorem
5.4 Quadratic residues and quadratic reciprocity
5.4.1 Quadratic residues and Legendre's symbol
5.4.2 Points on spheres mod p and Gauss sums
5.4.3 The quadratic reciprocity law
5.5 Congruences involving rational numbers and binomial coefficients
5.5.1 Binomial coefficients modulo primes: Lucas' theorem
5.5.2 Congruences involving rational numbers
5.5.3 Higher congruences: Fleck, Morley, Wolstenholme
5.5.4 Hensel's lemma
5.6 Problems for practice
6 p-adic valuations and the distribution of primes
6.1 The yoga of p-adic valuations
6.1.1 The local-global principle
6.1.2 The strong triangle inequality
6.1.3 Lifting the exponent lemma
6.2 Legendre's formula
6.2.1 The p-adic valuation of n!: the exact formula
6.2.2 The p-adic valuation of n!: inequalities
6.2.3 Kummer's theorem
6.3 Estimates for binomial coefficients and the distribution of prime numbers 6.3.1 Central binomial coefficients and Erdös' inequality
6.3.2 Estimating _(n)
6.3.3 Bertrand's postulate
6.4 Problems for practice
7 Congruences for composite moduli
7.1 The Chinese remainder theorem
7.1.1 Proof of the theorem and first examples
7.1.2 The local-global principle
7.1.3 Covering systems of congruences
7.2 Euler's theorem
7.2.1 Reduced residue systems and Euler's theorem
7.2.2 Practicing Euler's theorem
7.3 Order modulo n
7.3.1 Elementary properties and examples
7.3.2 Practicing the notion of order modulo n
7.3.3 Primitive roots modulo n
7.4 Problems for practice
8 Solutions to practice problems
8.1 Divisibility
8.2 GCD and LCM
8.3 The fundamental theorem of arithmetic
8.4 Congruences involving prime numbers
8.5 p-adic valuations and the distribution of primes
8.6 Congruences for composite moduli
Bibliography

最近チェックした商品