Optimal Design of Experiments (Classics in Applied Mathematics)

個数:
  • ポイントキャンペーン

Optimal Design of Experiments (Classics in Applied Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 483 p.
  • 言語 ENG
  • 商品コード 9780898716047
  • DDC分類 519.6

Full Description

Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.

Since the book's initial publication in 1993, readers have used its methods to derive optimal designs on the circle, optimal mixture designs, and optimal designs in other statistical models. Using local linearization techniques, the methods described in the book prove useful even for nonlinear cases, in identifying practical designs of experiments.

Contents

Preface
Chapter 1: Experimental Designs in Linear Models
Chapter 2: Optimal Designs for Scalar Parameter Systems
Chapter 3: Information Matrices
Chapter 4: Loewner Optimality
Chapter 5: Real Optimality Criteria
Chapter 6: Matrix Means
Chapter 7: The General Equivalence Theorem
Chapter 8: Optimal Moment Matrices and Optimal Designs
Chapter 9: D-, A-, E,- T-Optimality
Chapter 10: Admissibility of Moment and Information Matrices
Chapter 11: Bayes Designs and Discrimination Designs
Chapter 12: Efficient Designs for Finite Sample Sizes
Chapter 13: Invariant Design Problems
Chapter 14: Kiefer Optimality
Chapter 15: Rotatability and Response Surface Designs
Comments and References
Biographies
Bibliography
Index.

最近チェックした商品