Advances in Wind Turbine Blade Design and Materials (Woodhead Publishing Series in Energy)

個数:
電子版価格
¥37,559
  • 電子版あり
  • ポイントキャンペーン

Advances in Wind Turbine Blade Design and Materials (Woodhead Publishing Series in Energy)

  • ウェブストア価格 ¥56,570(本体¥51,428)
  • Woodhead Publishing Ltd(2013/10発売)
  • 外貨定価 UK£ 184.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 2,570pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 464 p.
  • 言語 ENG
  • 商品コード 9780857094261
  • DDC分類 621.312136

Full Description

Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world's consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades.

Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades.

Advances in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics.

Contents

Contributor contact details

Woodhead Publishing Series in Energy

Introduction

Part I: Wind turbine blade design: challenges and developments

Chapter 1: Introduction to wind turbine blade design

Abstract:

1.1 Introduction

1.2 Design principles and failure mechanisms

1.3 Challenges and future trends

Chapter 2: Loads on wind turbine blades

Abstract:

2.1 Introduction

2.2 Types of load

2.3 Generation of loads

2.4 Fatigue and extreme loads

2.5 Design verification testing

2.6 Challenges and future trends

2.7 Sources of further information and advice

Chapter 3: Aerodynamic design of wind turbine rotors

Abstract:

3.1 Introduction

3.2 The blade element momentum (BEM) method

3.3 Important parameters in aerodynamic rotor design

3.4 Particular design parameters

3.5 An example of the rotor design process

3.6 Future trends

3.7 Sources of further information and advice

3.8 Acknowledgements

Chapter 4: Aerodynamic characteristics of wind turbine blade airfoils

Abstract:

4.1 Introduction

4.2 Computational methods

4.3 Desired characteristics

4.4 The effect of leading edge contamination (roughness) and Reynolds number

4.5 Airfoil testing

4.6 Airfoil characteristics at high angles of attack

4.7 Correction for centrifugal and Coriolis forces

4.8 Establishing data for blade design

4.9 Future trends

Chapter 5: Aeroelastic design of wind turbine blades

Abstract:

5.1 Introduction

5.2 Wind turbine blade aeroelasticity

5.3 Blade design

Conclusion

5.4 Complete turbine design

5.5 Challenges and future trends

5.6 Sources of further information and advice

Part II: Fatigue behaviour of composite wind turbine blades

Chapter 6: Fatigue as a design driver for composite wind turbine blades

Abstract:

6.1 Introduction

6.2 Materials in blades

6.3 Blade structure and components

6.4 Fundamentals of wind turbine blade fatigue

6.5 Research into wind turbine blade fatigue and its modelling

6.6 Future trends

6.7 Conclusion

Chapter 7: Effects of resin and reinforcement variations on fatigue resistance of wind turbine blades

Abstract:

7.1 Introduction

7.2 Effects of loading conditions for glass and carbon laminates

7.3 Tensile fatigue trends with laminate construction and fiber content for glass fiber laminates

7.4 Effects of resin and fabric structure on tensile fatigue resistance

7.5 Delamination and material transitions

7.6 Comparison of fatigue trends for blade materials

7.7 Conclusion

7.8 Future trends

7.9 Sources of further information and advice

7.10 Acknowledgments

Chapter 8: Fatigue life prediction of wind turbine blade composite materials

Abstract:

8.1 Introduction

8.2 Macroscopic failure theories

8.3 Strength and stiffness degradation fatigue theories

8.4 Fracture mechanics fatigue theories

8.5 Case study: Phenomenological fatigue life prediction

8.6 Future trends

Chapter 9: Micromechanical modelling of wind turbine blade materials

Abstract:

9.1 Introduction

9.2 Analytical models of the mechanical behaviour, strength and damage of fibre-reinforced composites: an overview

9.3 Unit cell modelling of fibre-reinforced composites

9.4 Three-dimensional modelling of composite degradation under tensile loading

9.5 Carbon fibre-reinforced composites: statistical and compressive loading effects

9.6 Hierarchical composites with nanoengineered matrix

9.7 Conclusions and future trends

9.8 Sources of further information and advice

9.9 Acknowledgements

Chapter 10: Probabilistic design of wind turbine blades

Abstract:

10.1 Introduction

10.2 Structural analysis models

10.3 Failure definition

10.4 Random variables

10.5 Probabilistic methods and models

10.6 Application examples and discussion of techniques

10.7 Challenges and future trends

10.8 Sources of further information and advice

Part III: Advances in wind turbine blade materials, development and testing

Chapter 11: Biobased composites: materials, properties and potential applications as wind turbine blade materials

Abstract:

11.1 Introduction

11.2 Biobased fibres and matrix materials

11.3 Biobased composites

11.4 Case study: Comparison between cellulose and glass fibre composites

11.5 Special considerations in the development and application of biobased composites

Chapter 12: Surface protection and coatings for wind turbine rotor blades

Abstract:

12.1 Introduction

12.2 Fundamentals of surface protection for wind turbine blades

12.3 Protection from blade icing, lightning and air traffic

12.4 Performance testing of protection layers: an introduction

12.5 Accelerated testing of the surface coatings of wind turbine blades in practice

12.6 Conclusions, challenges and future trends

Chapter 13: Design, manufacture and testing of small wind turbine blades

Abstract:

13.1 Introduction

13.2 Requirements for small wind turbine blades

13.3 Materials and manufacture

13.4 Blade testing

13.5 Installation and operation

13.6 Challenges and future trends

13.7 Acknowledgements

Chapter 14: Wind turbine blade structural performance testing

Abstract:

14.1 Introduction

14.2 Test program

14.3 Types of tests

14.4 Test loads

14.5 Test details

14.6 Conclusion

Index

最近チェックした商品