Developments in Fiber-reinforced Polymer Frp Composites for Civil Engineering (Woodhead Publishing Series in Civil and Structural Engineering)

個数:
電子版価格
¥38,362
  • 電子版あり

Developments in Fiber-reinforced Polymer Frp Composites for Civil Engineering (Woodhead Publishing Series in Civil and Structural Engineering)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 525 p.
  • 言語 ENG
  • 商品コード 9780857092342
  • DDC分類 624

Full Description


The use of fiber-reinforced polymer (FRP) composite materials has had a dramatic impact on civil engineering techniques over the past three decades. FRPs are an ideal material for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. Developments in fiber-reinforced polymer (FRP) composites for civil engineering outlines the latest developments in fiber-reinforced polymer (FRP) composites and their applications in civil engineering.Part one outlines the general developments of fiber-reinforced polymer (FRP) use, reviewing recent advancements in the design and processing techniques of composite materials. Part two outlines particular types of fiber-reinforced polymers and covers their use in a wide range of civil engineering and structural applications, including their use in disaster-resistant buildings, strengthening steel structures and bridge superstructures.With its distinguished editor and international team of contributors, Developments in fiber-reinforced polymer (FRP) composites for civil engineering is an essential text for researchers and engineers in the field of civil engineering and industries such as bridge and building construction.

Contents

Contributor contact detailsWoodhead Publishing Series in Civil and Structural EngineeringIntroductionPart I: General developmentsChapter 1: Types of fiber and fiber arrangement in fiber-reinforced polymer (FRP) compositesAbstract:1.1 Introduction1.2 Fibers1.3 Fabrics1.4 Composites1.5 Future trends1.6 Sources of further information and adviceChapter 2: Biofiber reinforced polymer composites for structural applicationsAbstract:2.1 Introduction2.2 Reinforcing fibers2.3 Drawbacks of biofibers2.4 Modification of natural fibers2.5 Matrices for biocomposites2.6 Processing of biofiber-reinforced plastic composites2.7 Performance of biocomposites2.8 Future trends2.9 ConclusionChapter 3: Advanced processing techniques for composite materials for structural applicationsAbstract:3.1 Introduction3.2 Manual layup3.3 Plate bonding3.4 Preforming3.5 Vacuum assisted resin transfer molding (VARTM)3.6 Pultruded composites3.7 Automated fiber placement3.8 Future trends3.9 Sources of further informationChapter 4: Vacuum assisted resin transfer molding (VARTM) for external strengthening of structuresAbstract:4.1 Introduction4.2 The limitations of hand layup techniques4.3 Comparing hand layup and vacuum assisted resin transfer molding (VARTM)4.4 Analyzing load, strain, deflections, and failure modes4.5 Flexural fiber-reinforced polymer (FRP) wrapped beams4.6 Shear and flexural fiber-reinforced polymer (FRP) wrapped beams4.7 Comparing hand layup and vacuum assisted resin transfer molding (VARTM): results and discussion4.8 Case study: I-565 Highway bridge girder4.9 Conclusion and future trends4.10 AcknowledgmentChapter 5: Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their preventionAbstract:5.1 Introduction5.2 Failures in structural engineering applications of fiber-reinforced polymer (FRP) composites5.3 Strategies for failure prevention5.4 Non-destructive testing (NDT) and structural health monitoring (SHM) for inspection and monitoring5.5 Future trends5.6 Conclusion5.7 Acknowledgment5.8 Sources of further informationChapter 6: Assessing the durability of the interface between fiber-reinforced polymer (FRP) composites and concrete in the rehabilitation of reinforced concrete structuresAbstract:6.1 Introduction6.2 Interface stress analysis of the fiber-reinforced polymer (FRP)-to-concrete interface6 12 Young's modulus and shear modulus of beam i, respectively; bi is the width of beam i.6.3 Fracture analysis of the fiber-reinforced polymer (FRP)-to-concrete interface6.4 Durability of the fiber-reinforced polymer (FRP)-concrete interfacePart II: Particular types and applicationsChapter 7: Advanced fiber-reinforced polymer (FRP) composites for civil engineering applicationsAbstract:7.1 Introduction7.2 The use of fiber-reinforced polymer (FRP) materials in construction7.3 Practical applications in buildings7.4 Future trends7.5 Sources of further informationChapter 8: Hybrid fiber-reinforced polymer (FRP) composites for structural applicationsAbstract:8.1 Introduction8.2 Hybrid fiber-reinforced polymer (FRP) reinforced concrete beams: internal reinforcement8.3 Hybrid fiber-reinforced polymer (FRP) composites in bridge construction8.4 Future trends8.5 Sources of further informationChapter 9: Design of hybrid fiber-reinforced polymer (FRP)/autoclave aerated concrete (AAC) panels for structural applicationsAbstract:9.1 Introduction9.2 Performance issues with fiber-reinforced polymer (FRP)/autoclave aerated concrete (AAC) panels9.3 Materials, processing, and methods of investigation9.4 Comparing different panel designs9.5 Analytical modeling of fiber-reinforced polymer (FRP)/autoclave aerated concrete (AAC) panels9.6 Design graphs for fiber-reinforced polymer (FRP)/ autoclave aerated concrete (AAC) panels9.7 Conclusion9.8 Acknowledgment9.11 Appendix B: symbolsChapter 10: Impact behavior of hybrid fiber-reinforced polymer (FRP)/autoclave aerated concrete (AAC) panels for structural applicationsAbstract:10.1 Introduction10.2 Low velocity impact (LVI) and sandwich structures10.3 Materials and processing10.4 Analyzing sandwich structures using the energy balance model (EBM)10.5 Low velocity impact (LVI) testing10.6 Results of impact testing10.7 Analysis using the energy balance model (EBM)10.8 Conclusion10.9 Acknowledgment10.11 Appendix: symbolsChapter 11: Innovative fiber-reinforced polymer (FRP) composites for disaster-resistant buildingsAbstract:11.1 Introduction11.2 Traditional and advanced panelized construction11.3 Innovative composite structural insulated panels (CSIPs)11.4 Designing composite structural insulated panels (CSIPs) for building applications under static loading11.5 Composite structural insulated panels (CSIPs) as a disaster-resistant building panel11.6 Conclusion11.7 AcknowledgmentChapter 12: Thermoplastic composite structural insulated panels (CSIPs) for modular panelized constructionAbstract:12.1 Introduction12.2 Traditional structural insulated panel (SIP) construction12.3 Joining of precast panels in modular buildings12.4 Manufacturing of composite structural insulated panels (CSIPs)12.5 Connections for composite structural insulated panels (CSIPs)12.6 Conclusion12.7 AcknowledgmentChapter 13: Thermoplastic composites for bridge structures13.1 Introduction13.2 Manufacturing process for thermoplastic composites13.3 Bridge deck designs13.4 Design case studies13.5 Comparing bridge deck designs13.6 Prefabricated wraps for bridge columns13.7 Compression loading of bridge columns13.8 Impact loading of bridge columns13.9 Conclusion13.10 AcknowledgmentChapter 14: Fiber-reinforced polymer (FRP) composites for bridge superstructuresAbstract:14.1 Introduction14.2 Fiber-reinforced polymer (FRP) applications in bridge structures14.3 Hybrid fiber-reinforced polymer (FRP)-concrete bridge superstructureMaterialsTest results14.4 ConclusionChapter 15: Fiber-reinforced polymer (FRP) composites for strengthening steel structuresAbstract:15.1 Introduction15.2 Conventional repair techniques and advantages of fiber-reinforced polymer (FRP) composites15.3 Flexural rehabilitation of steel and steel-concrete composite beams15.4 Bond behavior15.5 Repair of cracked steel members15.6 Stabilizing slender steel members15.7 Case studies and field applications15.8 Future trends15.9 Sources of further informationChapter 16: Fiber-reinforced polymer (FRP) composites in environmental engineering applicationsAbstract:16.1 Introduction16.2 Advantages and environmental benefits of fiber-reinforced polymer (FRP) composites16.3 Fiber-reinforced polymer (FRP) composites in chemical environmental applications16.4 Fiber-reinforced polymer (FRP) composites in sea-water environment16.5 Fiber-reinforced polymer (FRP) composites in coal-fired plants16.6 Fiber-reinforced polymer (FRP) composites in mining environments16.7 Fiber-reinforced polymer (FRP) composites for modular building of environmental durability16.8 Fiber-reinforced polymer (FRP) wraps16.9 Recycling composites16.10 Green composites16.11 Durability of composites16.12 Design codes and specifications16.13 Future trends16.14 AcknowledgmentChapter 17: Design of all-composite structures using fiber-reinforced polymer (FRP) compositesAbstract:17.1 Introduction17.2 Review on analysis17.3 Systematic analysis and design methodology17.4 Structural members17.5 Structural systems17.6 Design guidelines17.7 ConclusionIndex

最近チェックした商品