Aircraft Propulsion and Gas Turbine Engines

Aircraft Propulsion and Gas Turbine Engines

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 876 p.
  • 言語 ENG
  • 商品コード 9780849391965
  • DDC分類 629.134353

Full Description


The escalating use of aircraft in the 21st century demands a thorough understanding of engine propulsion concepts, including the performance of aero engines. Among other critical activities,gas turbines play an extensive role in electric power generation, and marine propulsion for naval vessels and cargo ships. In the most exhaustive volume to date, this text examines the foundation of aircraft propulsion: aerodynamics interwoven with thermodynamics, heat transfer, and mechanical design. With a finely focused approach, the author devotes each chapter to a particular engine type, such as ramjet and pulsejet, turbojet, and turbofan. Supported by actual case studies, he illustrates engine performance under various operating conditions. Part I discusses the history, classifications, and performance of air breathing engines. Beginning with Leonardo and continuing on to the emergence of the jet age and beyond, this section chronicles inventions up through the 20th century. It then moves into a detailed discussion of different engine types, including pulsejet, ramjet, single- and multi-spool turbojet, and turbofan in both subsonic and supersonic applications. The author discusses Vertical Take Off and Landing aircraft, and provides a comprehensive examination of hypersonic scramjet and turbo ramjet engines. He also analyzes the different types of industrial gas turbines having single-and multi-spool with intercoolers, regenerators, and reheaters. Part II investigates the design of rotating compressors and turbines, and non-rotating components, intakes, combustion chambers, and nozzles for all modern jet propulsion and gas turbine engine systems, along with their performance. Every chapter concludes with illustrative examples followed by a problems section; for greater clarity, some provide a listing of important mathematical relations.

Contents

Part I Aero Engines and Gas Turbines Chapter 1 History and Classifications of Aero Engines . . . 3 1.1 Prejet Engines-History 4 1.1.1 Early Activities in Egypt and China 4 1.1.2 Leonardo da Vinci . .. ... .5 1.1.3 Branca's Stamping Mill . . . 5 1.1.4 Newton's SteamWagon . . . 6 1.1.5 Barber's Gas Turbine . .. 6 1.1.6 Miscellaneous Aero-Vehicles'Activities in the Eighteenth and Nineteenth Centuries . .. . 7 1.1.7 TheWright Brothers . .. . 8 1.1.8 Significant Events up to 1940s . .. 10 1.1.8.1 Aero-Vehicle Activities . . 10 1.1.8.2 Reciprocating Engines . . . 12 1.2 Jet Engines . . . . 13 1.2.1 Jet Engine Inventors: Dr. Hans von Ohain and Sir FrankWhittle . . 13 1.2.1.1 Sir Frank Whittle (1907-1996) . .. 13 1.2.1.2 Dr. Hans von Ohain (1911-1998) . . . 14 1.2.2 Turbojet Engines. .. .. 15 1.2.3 Turboprop and Turboshaft Engines . 18 1.2.4 Turbofan Engines . .. .21 1.2.5 Propfan Engine 23 1.2.6 Pulsejet, Ramjet, and Scramjet Engines . .. . . 24 1.2.6.1 Pulsejet Engine . .. .. 24 1.2.6.2 Ramjet and Scramjet Engines . .. . 25 1.2.7 Industrial Gas Turbine Engines . .27 1.3 Classifications of Aerospace Engines . .. . . 28 1.4 Classification of Jet Engines. .. . . 29 1.4.1 Ramjet. .. .29 1.4.2 Pulsejet . .. . . . 30 1.4.3 Scramjet . .. . . 31 1.4.4 Turboramjet . . . . 31 1.4.5 Turborocket . . . . 32 1.5 Classification of Gas Turbine Engines . .. . 32 1.5.1 Turbojet Engines. .. .. 33 1.5.2 Turboprop . .. 34 1.5.3 Turboshaft. .. 35 1.5.4 Turbofan Engines . .. .37 1.5.5 Propfan Engines . .. .. 41 1.5.6 Advanced Ducted Fan . .42 1.6 Industrial Gas Turbines . 43 1.7 Non-Air-Breathing Engines . .. . . 44 1.8 Future of Aircraft and Power Plant Industries . .. .. 44 Closure . . . . 52 Problems . . 52 References 54 Chapter 2 Performance Parameters of Jet Engines . .. . . . 57 2.1 Introduction . . . 57 2.2 Thrust Force . . . 57 2.3 Factors Affecting Thrust 67 2.3.1 Jet Nozzle . .. 67 2.3.2 Air Speed . .. . 68 2.3.3 Mass Air Flow . 68 2.3.4 Altitude . .. . . . 68 2.3.5 Ram Effect . .69 2.4 Engine Performance Parameters . . . 70 2.4.1 Propulsive Efficiency . .. 70 2.4.2 Thermal Efficiency . .. . . 75 2.4.3 Propeller Efficiency. .. . . 76 2.4.4 Overall Efficiency . .. . . . 77 2.4.5 Takeoff Thrust . 80 2.4.6 Specific Fuel Consumption . .. . . . 81 2.4.7 Aircraft Range . 82 2.4.8 Range Factor . . . 85 2.4.9 Endurance Factor . .. .85 2.4.10 Specific Impulse . .. .. 87 Problems . . 91 References 94 Chapter 3 Pulsejet and Ramjet Engines . .. . . . 97 3.1 Introduction . . . 97 3.2 Pulsejet Engines. .. . . . 97 3.2.1 Introduction . . . . 97 3.2.2 Valved Pulsejet 98 3.2.3 Valveless Pulsejet. .. .102 3.2.4 Pulse Detonation Engine . . 103 3.3 Ramjet Engines . .. . . . 106 3.3.1 Ideal Ramjet . . . 107 3.3.2 Real Cycle . .110 3.4 Case Study. .129 3.5 Summary and Governing Equations for ShockWaves and Isentropic Flow . .. .. 141 3.5.1 Summary . .. . 141 3.5.2 Normal ShockWave Relations . .141 9196: "chap00" - 2007/11/27 - 18:19 - page ix - #9 3.5.3 Oblique ShockWave Relations . .142 3.5.4 Rayleigh-Flow Equations . .. .. 142 3.5.5 Isentropic Relation . .. . . 142 Problems . . 143 References 145 Chapter 4 Turbojet Engine . 147 4.1 Introduction . . . 147 4.2 Single Spool . . . 149 4.2.1 Examples of Engines . .. 149 4.2.2 Thermodynamic Analysis . .. .. 150 4.2.3 Ideal Case . .. 150 4.2.4 Actual Case . . . . 165 4.2.5 Comparison Between Operative and Inoperative Afterburner . .. . 175 4.3 Two-Spool Engine . .. 178 4.3.1 Nonafterburning Engine. . . 179 4.3.1.1 Example of Engines . .. 179 4.3.2.2 Thermodynamic Analysis 180 4.3.3 Afterburning Engine . .. . 183 4.3.3.1 Examples for Two-Spool Afterburning Turbojet Engines . .. .183 4.3.2.2 Thermodynamic Analysis 184 4.4 Statistical Analysis . .. 188 4.5 Thrust Augmentation . . . 189 4.5.1 Water Injection 189 4.5.2 Afterburning . . . 190 4.5.3 Pressure Loss in Afterburning Engine . .. .191 4.6 Supersonic Turbojet . .195 4.7 Optimization of the Turbojet Cycle . .. .198 Problems . . 209 References 213 Chapter 5 Turbofan Engines . .. .. 215 5.1 Introduction . . . 215 5.2 Forward Fan Unmixed Single-Spool Configuration. .216 5.3 Forward Fan Unmixed Two-Spool Engines . 221 5.3.1 The Fan and Low-Pressure Compressor on One Shaft. . . 221 5.3.2 Fan Driven by the LPT and the Compressor Driven by the HPT . . . 232 5.3.3 A Geared Fan Driven by the LPT and the Compressor Driven by the HPT. .233 5.4 Forward Fan Unmixed Three-Spool Engine . 235 5.5 Forward Fan Mixed-Flow Engine . . 242 5.5.1 Mixed-Flow Two-Spool Engine . . . . 242 5.6 Mixed Turbofan with Afterburner . . 255 5.6.1 Introduction . . . . 255 5.6.2 Ideal Cycle . .256 5.6.3 Real Cycle . .258 5.7 AFT Fan . .. . 258 5.8 V/STOL. .. . . 261 5.8.1 Swiveling Nozzles . .. . . . 261 5.8.2 Switch-In Deflector System . .. . . . 266 5.9 Performance Analysis. . . 273 Summary. . 294 Problems . . 297 References 305 Chapter 6 Turboprop, Turboshaft, and Propfan Engines . . . 307 6.1 Introduction to Turboprop Engines . .. .307 6.2 Classification of Turboprop Engines . .. . . . 310 6.3 Thermodynamic Analysis of Turboprop Engines. .. . . 312 6.3.1 Single-Spool Turboprop . . . 312 6.3.2 Two-Spool Turboprop . .316 6.4 Analogy with Turbofan Engines. . . . 319 6.5 Equivalent Engine Power . .. .. 320 6.5.1 Static Condition320 6.5.2 Flight Operation . .. .. 320 6.6 Fuel Consumption . .. 320 6.7 Turboprop Installation . . 321 6.8 Performance Analysis. . . 329 6.9 Comparison Between Turbojet, Turbofan, and Turboprop Engines . .. .330 6.10 Turboshaft Engines . .333 6.11 Power Generated by Turboshaft Engines . . . . 334 6.11.1 Single-Spool Turboshaft . . 334 6.11.2 Double-Spool Turboshaft . .. .. 335 6.12 Examples for Turboshaft Engines . . 336 6.13 Propfan Engines. .. . . . 337 Summary of Turboprop Relations . .. . . . 340 Problems . . 340 References 344 Chapter 7 High-Speed Supersonic and Hypersonic Engines . .. . . . 345 7.1 Introduction . . . 345 7.2 Supersonic Aircraft and Programs . .. .. 345 7.2.1 Anglo-French Activities . . . 346 7.2.2 Russian Activities . .. .347 7.2.3 The U.S. Activities . .. . . . 347 7.3 Future of Commercial Supersonic Technology . .. .349 7.4 Technology Challenges of the Future Flight . 350 7.5 High-Speed Supersonic and Hypersonic Propulsion . . . . 350 7.5.1 Introduction . . . . 350 7.5.2 Hybrid Cycle Engine . .. 351 7.6 Turboramjet Engine . .352 7.7 Wraparound Turboramjet . .. .. 352 7.7.1 Operation as a Turbojet Engine . .352 7.7.2 Operation as a Ramjet Engine . .. 355 7.8 Over/Under Turboramjet . .. .. 356 7.8.1 Turbojet Mode . 358 7.8.2 Dual Mode . .358 7.8.3 Ramjet Mode . . 358 7.9 Turboramjet Performance . .. .358 7.9.1 Turbojet Mode . 358 7.9.2 Ramjet Mode . . 359 7.9.3 Dual Mode . .359 7.10 Case Study. .360 7.11 Examples for Turboramjet Engines . .. .365 7.12 Hypersonic Flight . .. . 367 7.12.1 History of Hypersonic Vehicles. .367 7.12.2 Hypersonic Commercial Transport . 369 7.12.3 Military Applications . .. 370 7.13 Scramjet Engines. .. . . 370 7.13.1 Introduction . . . . 370 7.13.2 Thermodynamics . .. .372 7.14 Intake of a Scramjet Engine . .. . . 372 7.15 Combustion Chamber. . . 373 7.16 Nozzle . .. . . . 376 7.17 Performance Parameters 376 Problems . . 380 References 383 Chapter 8 Industrial Gas Turbines . .385 8.1 Introduction . . . 385 8.2 Categories of Gas Turbines . .. . . . 386 8.3 Types of Industrial Gas Turbines . . . 387 8.4 Single-Shaft Engine. .388 8.4.1 Single Compressor and Turbine . . . . 389 8.4.1.1 Ideal Cycle. .. 389 8.4.1.2 Real Cycle . .. 392 8.4.2 Regeneration . . . 395 8.4.3 Reheat . .. .398 8.4.4 Intercooling . . . . 399 8.4.5 Combined Intercooling, Regeneration, and Reheat . .. 401 8.5 Double-Shaft Engine. . . . 406 8.5.1 Free Power Turbine . .. . . 406 8.5.2 Two Discrete Shafts (Spools) . .. . 408 8.6 Three Spool . . . 415 8.7 Combined Gas Turbine . 422 8.8 Marine Applications . . . . 423 8.8.1 Additional Components for Marine Applications . .. . . 424 8.8.2 Examples for Marine Gas Turbines . 426 8.9 Offshore Gas Turbines . . 427 8.10 Micro Gas Turbines ( -Gas Turbines) . .. . 428 8.10.1 Microturbines versus Typical Gas Turbines . . . . 429 8.10.2 Design Challenges . .. . . . 429 8.10.3 Applications . . . . 430 Problems . . 431 References 433 Part II Component Design . .. .435 Chapter 9 Power Plant Installation and Intakes . 437 9.1 Introduction . . . 437 9.2 Power Plant Installation 437 9.3 Subsonic Aircraft. .. . . 437 9.3.1 Turbojet and Turbofan Engines . .438 9.3.1.1 Wing Installation . .. . . . 438 9.3.1.2 Fuselage Installation . .442 9.3.1.3 CombinedWing and Tail Installation (Three Engines) . . . 443 9.3.1.4 Combined Fuselage and Tail Installation . .444 9.3.2 Turboprop Installation . .444 9.4 Supersonic Aircraft . .446 9.4.1 Civil Transports 446 9.4.2 Military Aircrafts . .. .447 9.5 Air Intakes or Inlets . .448 9.6 Subsonic Intakes . .. . . 449 9.6.1 Inlet Performance . .. .451 9.6.2 Performance Parameters . . . 453 9.6.3 Turboprop Inlets . .. .. 457 9.7 Supersonic Intakes . .. 457 9.7.1 Review of Gas Dynamic Relations for Normal and Oblique Shocks . .. . . . 460 9.7.1.1 Normal ShockWaves . . . . 460 9.7.1.2 Oblique ShockWaves . . . . 461 9.7.2 External Compression Intake (Inlet) 462 9.7.3 Internal Compression Inlet (Intake) 467 9.7.4 Mixed Compression Intakes . .. . . 468 9.8 Matching Between Intake and Engine . .. . 470 9.9 Case Study. .472 Problems . . 475 References 479 Chapter 10 Combustion Systems. .. . . 481 10.1 Introduction . . . 481 10.2 Subsonic Combustion Chambers . . . 482 10.2.1 Tubular (or Multiple) Combustion Chambers . . 482 10.2.2 Tubo-Annular Combustion Chambers . .. .483 10.2.3 Annular Combustion Chambers. .484 10.3 Supersonic Combustion Chamber. . 485 10.4 Combustion Process . . . . 485 10.5 The Chemistry of Combustion . .487 10.6 Combustion Chamber Performance . .. .490 10.6.1 Pressure Losses 490 10.6.2 Combustion Efficiency . . . . 491 10.6.3 Combustion Stability . .. 491 10.6.4 Combustion Intensity . .. 492 10.7 Cooling . .. . . 493 10.8 Material . .. . . 495 10.9 Aircraft Fuels . . 496 10.10 Emissions and Pollutants . .. .. 497 10.10.1 Pollutant Formation . .. . 497 10.11 The Afterburner . .. . . . 498 10.12 Supersonic Combustion System. . . . 499 Problems . . 501 References 503 Chapter 11 Exhaust System . 505 11.1 Introduction . . . 505 11.2 Nozzle . .. . . . 507 11.2.1 Governing Equations . .. 508 11.2.1.1 Convergent-Divergent Nozzle . .. 508 11.2.1.2 Convergent Nozzle . .. . 511 11.2.2 Variable Geometry Nozzles . .. . . . 512 11.2.3 Afterburning Nozzles . .. 514 11.3 Calculation of the Two-Dimensional Supersonic Nozzle . .. . . . 517 11.3.1 Convergent Nozzle . .. . . 518 11.3.2 Divergent Nozzle . .. .522 11.3.2.1 Analytical Determination of the Contour of a Nozzle . . . . 525 11.3.2.2 Design Procedure for a Minimum Length Divergent Nozzle . .. 527 11.3.2.3 Procedure of Drawing the ExpansionWaves Inside the Nozzle . . . 528 11.4 Thrust Reversal . .. . . . 529 11.4.1 Classification of Thrust Reverser Systems . .531 11.4.2 Calculation of Ground Roll Distance . .. .. 536 11.5 Thrust Vectoring . .. . . 537 11.5.1 Governing Equations . .. 540 11.6 Noise. .. .. 541 11.6.1 Introduction . . . . 541 11.6.2 Acoustics Model Theory . . 543 11.6.3 Methods Used to Decrease the Jet Noise . .. . 544 Problems . . 547 References 548 Chapter 12 Centrifugal Compressors . . . 551 12.1 Introduction . . . 551 12.2 Layout of Compressor . . 553 12.2.1 Impeller . .. . . 553 12.2.2 Diffuser . .. . . 554 12.2.3 Scroll or Manifold . .. . . . 556 12.3 Classification of Centrifugal Compressors . . 556 12.4 Governing Equations . . . 559 12.4.1 The Continuity Equation . . 562 12.4.2 The Momentum Equation or Euler's Equation for Turbomachinery . .. .562 12.4.3 The Energy Equation or the First Law of Thermodynamics . .. . . . 563 12.4.4 Slip Factor . . . 567 12.4.5 Prewhirl . .. . . 570 12.4.6 Types of Impeller . .. .581 12.5 Diffuser . .. . . 589 12.5.1 Vaneless Diffuser . .. .590 12.5.2 Vaned Diffuser. 592 12.6 Discharge Systems . .. 598 12.7 Characteristic Performance of a Centrifugal Compressor . .. . . 598 12.8 Erosion . .. . . 602 12.8.1 Introduction . . . . 602 12.8.2 Theoretical Estimation of Erosion . . 605 Problems . . 609 References 616 Chapter 13 Axial-Flow Compressors and Fans. . . 619 13.1 Introduction . . . 619 13.2 Comparison Between Axial and Centrifugal Compressors . .. . 621 13.2.1 Advantages of the Axial-Flow Compressor Over the Centrifugal Compressor . .. . . . 621 13.2.2 Advantages of Centrifugal-Flow Compressor Over the Axial-Flow Compressor . . . . 622 13.2.3 Main Points for Comparison Between Centrifugal and Axial Compressors . . 623 13.3 Mean Flow (Two-Dimensional Approach) . . 623 13.3.1 Types of Velocity Triangles . .. . . . 625 13.3.2 Variation of Enthalpy Velocity and Pressure of an Axial Compressor . .. .627 13.4 Basic Design Parameters . .. .. 635 13.4.1 Centrifugal Stress . .. .635 13.4.2 Tip Mach Number . .. . . . 637 13.4.3 Fluid Deflection638 13.5 Design Parameters . .. 639 13.5.1 Degree of Reaction . .. . . 640 13.6 Three-Dimensional Flow . .. .. 642 13.6.1 Axisymmetric Flow. .. . . 643 13.6.2 Simplified Radial Equilibrium Equation . .. . 644 13.6.3 Free Vortex Method . .. . 646 13.6.4 General Design Procedure . .. .651 13.7 Complete Design Process for Compressor. . . 659 13.8 Rotational Speed (RPM) and Annulus Dimensions . .659 13.9 Determine Number of Stages (Assuming Stage Efficiency) . .. 662 13.10 Calculation of Air Angles for Each Stage at the Mean Section . . . 663 13.10.1 First Stage . .. 663 13.10.2 Stages from (2) to (n 1) . .. .. 664 13.10.3 Last Stage . .. 665 13.11 Variation of Air Angles from Root to Tip Based on the Type of Blading (Free Vortex-Exponential-First Power) . . . 666 13.12 Blade Design . . 667 13.12.1 Cascade Measurements. . . . 667 13.12.2 Choosing the Type of Airfoil . .. . . 672 13.12.3 Stage Performance . .. . . . 672 13.12.3.1 Blade Efficiency and Stage Efficiency . .. . . 677 13.13 Compressibility Effects . 679 13.14 Performance . . . 687 13.14.1 Single Stage . . . . 687 13.14.2 Multistage Compressor . . . . 689 13.14.3 Compressor Map . .. .690 13.14.4 Stall and Surge . 691 13.14.5 Surge Control Methods. . . . 694 13.14.5.1 Multispool Compressor . . 694 13.14.5.2 Variable Vanes . . 694 13.14.5.3 Air Bleed. .. . . 695 13.15 Case Study. .701 13.15.1 Mean Section Data . .. . . 701 13.15.2 Variations from Hub to Tip . .. . . . 701 13.15.3 Details of Flow in Stage Number 2 . 703 13.15.4 Number of Blades and Stresses of the Seven Stages. .704 13.15.5 Compressor Layout . .. . . 705 13.16 Erosion . .. . . 708 13.17 Fouling . .. . . 712 Problems . . 714 References 725 Chapter 14 Axial Turbines. . . 727 14.1 Introduction . . . 727 14.2 Comparison Between Axial Flow Compressors and Turbines . . . . 729 14.3 Aerodynamics and Thermodynamics for a Two-Dimensional Flow . .. . . . 730 14.3.1 Velocity Triangles . .. . . . 730 14.3.2 Euler's Equation . .. .. 732 14.3.3 Efficiency, Losses, and Pressure Ratio . .. . . . 734 14.3.4 Nondimensional Quantities . .. . . . 738 14.3.5 Several Remarks . .. .. 746 14.4 Three Dimensional . .. 752 14.4.1 Free Vortex Design . .. . . 753 14.4.2 Constant Nozzle Angle Design ( 2) 753 14.4.3 General Case . . . 756 14.4.4 Constant Specific Mass Flow Stage 757 14.5 Preliminary Design . .772 14.5.1 Main Design Steps. .. . . . 772 14.5.2 Aerodynamic Design . .. 772 14.5.3 Blade Profile Selection . . . . 774 14.5.4 Mechanical and Structural Designs . 775 14.5.4.1 Centrifugal Stresses . .. 775 14.5.4.2 Centrifugal Stresses on Blades . .. 776 14.5.4.3 Centrifugal Stresses on Discs . .. . . 777 14.5.4.4 Gas Bending Stress . .. . 779 14.5.4.5 Centrifugal Bending Stress . .. .781 14.5.4.6 Thermal Stress . . 781 14.5.5 Turbine Cooling . .. .. 782 14.5.5.1 Turbine Cooling Techniques . .. . . . 782 14.5.5.2 Mathematical Modeling. . 784 14.5.6 Losses and Efficiency . .790 14.5.6.1 Profile Loss (Yp) . .. . . . 790 14.5.6.2 Annulus Loss . . . 791 14.5.6.3 Secondary Flow Loss . . . . 791 14.5.6.4 Tip Clearance Loss (Yk) . 792 14.6 Turbine Map. . . 793 14.7 Case Study. .797 14.7.1 Design Point . . . 797 Summary. . 804 Problems . . 805 References 811 Chapter 15 Radial Inflow Turbines . .813 15.1 Introduction . . . 813 15.2 Thermodynamics. .. . . 814 15.3 Dimensionless Parameters . .. .818 15.4 Preliminary Design . .819 15.5 Breakdown of Losses . . . 822 15.6 Design for Optimum Efficiency . . . . 825 15.7 Cooling . .. . . 829 Problems . . 830 References 832 Chapter 16 Module Matching . .. .. 833 16.1 Introduction . . . 833 16.2 Off-Design Operation of a Single-Shaft Gas Turbine Driving a Load . .. . 833 16.2.1 Matching Procedure . .. . 834 16.2.2 Different Loads 839 16.3 Off Design of Free Turbine Engine . .. .839 16.3.1 Gas Generator. . 840 16.3.2 Free Power Turbine . .. . . 841 16.4 Off Design of Turbojet Engine . .846 Problems . . 851 References 853 Appendix A Glossary Appendix B Data base for turbofan engines Appendix C Gas Turbines

最近チェックした商品