Ginzburg-Landau Vortices (Progress in Nonlinear Differential Equations and Their Applications)

個数:

Ginzburg-Landau Vortices (Progress in Nonlinear Differential Equations and Their Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9780817637231
  • DDC分類 530.155353

Full Description

The original motivation of this study comes from the following questions that were mentioned to one ofus by H. Matano. Let 2 2 G= B = {x=(X1lX2) E 2; x‾ + x‾ = Ixl {{\varepsilon^2}}}{\smallint_G}{\left( {{{\left| {{u_{\varepsilon }}} \right|}^2} - 1} \right)^2} $$.- 4. $$ \left| {{u_e}} \right| \geqslant \frac{1}{2} $$ on "good discs".- IV. Towards locating the singularities: bad discs and good discs.- 1. A covering argument.- 2. Modifying the bad discs.- V. An upper bound for the energy of u? away from the singularities.- 1. A lower bound for the energy of u? near aj.- 2. Proof of Theorem V.l.- VI. u?n converges: u? is born!.- 1. Proof of Theorem VI.1.- 2. Further properties of u? : singularities have degree one and they are not on the boundary.- VII. u? coincides with THE canonical harmonic map having singularities (aj).- VIII. The configuration (aj) minimizes the renormalized energy W.- 1. The general case.- 2. The vanishing gradient property and its various forms.- 3. Construction of critical points of the renormalized energy.- 4. The case G=B1 and $$ g\left( \theta \right) = {e^{{i\theta }}} $$.- 5. The case G=B1 and $$ g\left( \theta \right) = {e^{{i\theta }}} $$ with d?.- IX. Some additional properties of u?.- 1. The zeroes of u?.- 2. The limit of $$ \left\{ {{E_{\varepsilon }}\left( {{u_{\varepsilon }}} \right) - \pi d\left| {\log \varepsilon } \right|} \right\} $$ as $$ \varepsilon \to 0 $$.- 3. $$ {\smallint_G}{\left| {\nabla \left| {{u_{\varepsilon }}}\right|} \right|^2} $$ remains bounded as $$ \varepsilon \to 0 $$.- 4. The bad discs revisited.- X. Non minimizing solutions of the Ginzburg-Landau equation.- 1. Preliminary estimates; bad discs and good discs.- 2. Splitting $$ \left| {\nabla {v_{\varepsilon }}} \right| $$.- 3. Study of the associated linear problems.- 4. The basic estimates: $$ {\smallint_G}{\left| {\nabla {v_{\varepsilon }}} \right|^2} \leqslant C\left| {\log \;\varepsilon } \right| $$ and $$ {\smallint_G}{\left| {\nabla {v_{\varepsilon }}} \right|^p} \leqslant {C_p} $$ for p

Contents

2025-07-11 11:04:05

最近チェックした商品