Köthe-Bochner Function Spaces (2004. XIV, 370 p.)

個数:

Köthe-Bochner Function Spaces (2004. XIV, 370 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 370 p.
  • 商品コード 9780817635213

Full Description


This monograph is devoted to the study of Koethe-Bochner function spaces, an active area of research at the intersection of Banach space theory, harmonic analysis, probability, and operator theory. A number of significant results---many scattered throughout the literature---are distilled and presented here, giving readers a comprehensive view of the subject from its origins in functional analysis to its connections to other disciplines. Considerable background material is provided, and the theory of Koethe-Bochner spaces is rigorously developed, with a particular focus on open problems. Extensive historical information, references, and questions for further study are included; instructive examples and many exercises are incorporated throughout. Both expansive and precise, this book's unique approach and systematic organization will appeal to advanced graduate students and researchers in functional analysis, probability, operator theory, and related fields.

Contents

1 Classical Theorems.- 1.1 Preliminaries.- 1.2 Basic Sequences.- 1.3 Banach Spaces Containing l1 or c0.- 1.4 James's Theorem.- 1.5 Continuous Function Spaces.- 1.6 The Dunford-Pettis Property.- 1.7 The Pe?czynski Property (V*).- 1.8 Tensor Products of Banach Spaces.- 1.9 Conditional Expectation and Martingales.- 1.10 Notes and Remarks.- 1.11 References.- 2 Convexity and Smoothness.- 2.1 Strict Convexity and Uniform Convexity.- 2.2 Smoothness.- 2.3 Banach-Saks Property.- 2.4 Notes and Remarks.- 2.5 References.- 3 Koethe-Bochner Function Spaces.- 3.1 Koethe Function Spaces.- 3.2 Strongly and Scalarly Measurable Functions.- 3.3 Vector Measure.- 3.4 Some Basic Results.- 3.5 Dunford-Pettis Operators.- 3.6 The Radon-Nikodym Property.- 3.7 Notes and Remarks.- 3.8 References.- 4 Stability Properties I.- 4.1 Extreme Points and Smooth Points.- 4.2 Strongly Extreme and Denting Points.- 4.3 Strongly and w*-Strongly Exposed Points.- 4.4 Notes and Remarks.- 4.5 References.- 5 Stability Properties II.- 5.1 Copies of c0 in E(X).- 5.2 The Diaz-Kalton Theorem.- 5.3 Talagrand's L1(X)-Theorem.- 5.4 Property (V*).- 5.5 The Talagrand Spaces.- 5.6 The Banach-Saks Property.- 5.7 Notes and Remarks.- 5.8 References.- 6 Continuous Function Spaces.- 6.1 Vector-Valued Continuous Functions.- 6.2 The Dieudonne Property in C(K, X).- 6.3 The Hereditary Dunford-Pettis Property.- 6.4 Projective Tensor Products.- 6.5 Notes and Remarks.- 6.6 References.