Modeling and Computational Methods for Kinetic Equations (Modeling and Simulation in Science, Engineering & Technology) (2004. 384 p. w. 65 figs.)

個数:

Modeling and Computational Methods for Kinetic Equations (Modeling and Simulation in Science, Engineering & Technology) (2004. 384 p. w. 65 figs.)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 384 p.
  • 商品コード 9780817632540

Full Description

In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods.

This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works.

The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media modeling, quantum kinetic modeling, and coagulation-fragmentation problems.

"Modeling and Computational Methods of Kinetic Equations" will be accessible to readers working in different communities where kinetic theory is important: graduate students, researchers and practitioners in mathematical physics, applied mathematics, and various branches of engineering. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.

Contents

I. Geometric Operators and the Inde.- Spectral invariants of operators of Dirac type on partitioned manifolds.- Index theory of Dirac operators on manifolds with corners up to codimension two.- Index defects in the theory of spectral boundary value problems.- Cyclic homology and pseudo differential operators, a survey.- Index and secondary index theory for flat bundles with duality.- II. Elliptic Boundary Value Problems.- Toeplitz operators, and ellipticity of boundary value problems with global projection conditions.- On the tangential oblique derivative problem — methods, results, open problems.- A note on boundary value problems on manifolds with cylindrical ends.- Relative elliptic theory.- Appendix. Fourier Integral Operators.- A.1. Homogeneous Lagrangian manifolds.- A.2. Local description of homogeneous Lagrangian manifolds.- A.3. Composition of homogeneous Lagrangian manifolds.- A.4. Definition of Fourier integral operators.- A.5. Pseudodifferential operators as Fourier integral operators.- A.6. Boundedness theorems.- A.7. Composition theorems.- References.

最近チェックした商品