線形代数(テキスト)<br>Linear Algebra

個数:
電子版価格
¥13,032
  • 電子版あり
  • ポイントキャンペーン

線形代数(テキスト)
Linear Algebra

  • ウェブストア価格 ¥17,674(本体¥16,068)
  • CRC Press Inc(2022/07発売)
  • 外貨定価 US$ 80.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 800pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 312 p.
  • 言語 ENG
  • 商品コード 9780815373315
  • DDC分類 512.5

Full Description

Linear Algebra is intended primarily as an undergraduate textbook but is written in such a way that it can also be a valuable resource for independent learning. The narrative of the book takes a matrix approach: the exposition is intertwined with matrices either as the main subject or as tools to explore the theory. Each chapter contains a description of its aims, a summary at the end of the chapter, exercises, and solutions. The reader is carefully guided through the theory and techniques presented which are outlined throughout in "How to..." text boxes. Common mistakes and pitfalls are also pointed out as one goes along.

Features




Written to be self-contained



Ideal as a primary textbook for an undergraduate course in linear algebra



Applications of the general theory which are of interest to disciplines outside of mathematics, such as engineering

Contents

1. Matrices. 1.1. Real and Complex Matrices. 1.2. Matrix Calculus. 1.3. Matrix Inverses. 1.4. Elementary Matrices. 1.5. Exercises. 1.6. At a Glance. 2. Determinant. 2.1. Axiomatic Definition. 2.2. Leibniz's Formula. 2.3. Laplace's Formula. 2.4. Exercises. 2.5. At a Glance. 3. Vector Spaces. 3.1. Vector Spaces. 3.2. Linear Independence. 3.3. Bases and Dimension. 3.4. Null Space, Row Space and Column Space. 3.5. Sum and intersection of Subspaces. 3.6. Change of Basis. 3.7. Exercises. 3.8. At a Glance. 4. Eigenvalues and Eigenvectors. 4.1. Spectrum of a Matrix. 4.2. Spectral Properties. 4.3. Similarity and Diagonalisation. 4.4. Jordan Canonical Form. 4.5. Exercises. 4.6. At a Glance. 5. Linear Transformations. 5.1. Linear Transformations. 5.2. Matrix Representations. 5.3. Null Space and Image. 5.4. Isomorphisms and Rank-Nullity Theorem. 5.5. Composition and Invertibility. 5.6. Change of Basis. 5.7. Spectrum and Diagonalisation. 5.8. Exercises. 5.9. At a Glance. 6. Inner Product Spaces. 6.1. Real Inner Product Spaces. 6.2. Complex Inner Product Spaces. 6.3. Orthogonal Sets. 6.4. Orthogonal and Unitary Diagonalisation. 6.5. Singular Value decomposition. 6.6. Affine Subspaces of Rn. 6.7. Exercises. 6.8. At a Glance. 7 Special Matrices by Example. 7.1. Least Squares Solutions. 7.2. Markov Chains. 7.3. Population Dynamics. 7.4. Graphs. 7.5. Differential Equations. 7.6. Exercises. 7.7. At a Glance. 8. Appendix. 8.1. Uniqueness of Reduced Row Echelon Form. 8.2. Uniqueness of determinant. 8.3. Direct sum of Subspaces. 9. Solutions.