線形代数から微分方程式までの工業数学(テキスト)<br>Linear Algebra to Differential Equations

個数:

線形代数から微分方程式までの工業数学(テキスト)
Linear Algebra to Differential Equations

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 412 p.
  • 言語 ENG
  • 商品コード 9780815361466
  • DDC分類 512.5

Full Description

Linear Algebra to Differential Equations concentrates on the essential topics necessary for all engineering students in general and computer science branch students, in particular. Specifically, the topics dealt will help the reader in applying linear algebra as a tool.

The advent of high-speed computers has paved the way for studying large systems of linear equations as well as large systems of linear differential equations. Along with the standard numerical methods, methods that curb the progress of error are given for solving linear systems of equations.

The topics of linear algebra and differential equations are linked by Kronecker products and calculus of matrices. These topics are useful in dealing with linear systems of differential equations and matrix differential equations. Differential equations are treated in terms of vector and matrix differential systems, as they naturally arise while formulating practical problems. The essential concepts dealing with the solutions and their stability are briefly presented to motivate the reader towards further investigation.

This book caters to the needs of Engineering students in general and in particular, to students of Computer Science & Engineering, Artificial Intelligence, Machine Learning and Robotics. Further, the book provides a quick and complete overview of linear algebra and introduces linear differential systems, serving the basic requirements of scientists and researchers in applied fields.

Features




Provides complete basic knowledge of the subject



Exposes the necessary topics lucidly



Introduces the abstraction and at the same time is down to earth



Highlights numerical methods and approaches that are more useful



Essential techniques like SVD and PCA are given



Applications (both classical and novel) bring out similarities in various disciplines:



Illustrative examples for every concept: A brief overview of techniques that hopefully serves the present and future needs of students and scientists.

Contents

1. Vectors and Matrices. 1.1. Introduction. 1.2. Scalars and Vectors. 1.3. Introduction to Matrices. 1.4. Types of Matrices. 1.5. Elementary Operations and Elementary Matrices. 1.6. Determinants. 1.7. Inverse of a Matrix. 1.8. Partitioning of Matrices. 1.9. Advanced Topics: Pseudo Inverse and Congruent Inverse. 1.10. Conclusion. 2. Linear System of Equations. 2.1. Introduction. 2.2. Linear System of Equations. 2.3. Rank of a Matrix. 2.4. Echelon Form and Normal Form. 2.4. Echelon Form and Normal Form. 2.5. Solutions of a Linear System of Equations. 2.6. Cayley Hamilton Theorem. 2.7. Eigen Values and Eigen Vectors. 2.8. Singular Values and Singular Vectors. 2.9. Quadratic Forms. 2.10. Conclusion. 3. Vector Spaces. 3.1. Introduction. 3.2. Vector Space and a Subspace. 3.3. Linear Independence, Basis and Dimension. 3.4. Change of Basis - Matrix. 3.5. Linear Transformations. 3.6. Matrices of Linear Transformations. 3.7. Inner Product Space. 3.8. Gram-Schmidt Orthogonalization. 3.9. Linking Linear Algebra to Differential Equations. 3.10. Conclusion. 4. Numerical Methods in Linear Algebra. 4.1. Introduction. 4.2. Elements of Computation and Errors. 4.3. Direct Methods for Solving a Linear System of Equations. 4.4. Iterative Methods. 4.5. Householder Transformation. 4.6. Tridiagonalization of a Symmetric Matrix by Plane Rotation. 4.7. QR Decomposition. 4.8. Eigen Values: Bounds and Power Method. 4.9. Krylov Subspace Methods. 4.10. Conclusion. 5. Applications. 5.1. Introduction. 5.2. Finding Curves through Given Points. 5.3. Markov Chains. 5.4. Leontief's Models. 5.5. Cryptology. 5.6. Application to Computer Graphics. 5.7. Application to Computer Graphics. 5.8. Bioinformatics. 5.9. Principal Component Analysis (PCA). 5.10. Big Data. 5.11. Conclusion. 6. Kronecker Product. 6.1. Introduction. 6.2. Primary Matrices. 6.3. Kronecker Products. 6.4. Further Properties of Kronecker products. 6.5. Kronecker product of two linear transformations. 6.6. Kronecker Product and Vector Operators. 6.7. Permutation Matrices and Kronecker Products. 6.8. Analytical functions and Kronecker Product. 6.9. Kronecker Sum. 6.10. Lyapunov Function. 6.11. Conclusion. 7. Calculus of Matrices. 7.1. Introduction. 7.2. Derivative of a Matrix Valued Function with respect to a Scalar. 7.3. Derivative of a Vector Valued Function w.r.t. a Vector. 7.4. Derivative of a Scalar Valued Function w.r.t. a Matrix. 7.5. Derivative of a Matrix Valued Function w.r.t. its Entries and Vice versa. 7.6. The Matrix Differential. 7.7. Derivative of a Matrix w.r.t. a Matrix. 7.8. Derivative Formula using Kronecker Products. 7.9. Another Definition for Derivative of a Matrix w.r.t. a Matrix. 7.10. Conclusion. 8. Linear Systems of Differential Equations. 8.1. Introduction. 8.2. Linear Systems. 8.3. Fundamental Matrix. 8.4. Method of Successive Approximations. 8.5. Nonhomogeneous Systems. 8.6. Linear Systems with Constant Coefficients. 8.7. Stability Analysis of a System. 8.8. Election Mathematics. 8.9. Conclusion. 9. Linear Matrix Differential Equations. 9.1. Introduction. 9.2. Initial Value Problem (IVP). 9.3. LMDE X' = A(t)X. 9.4. The LMDE X' = AXB. 9.5. More General LMDE. 9.6. A Class of LMDE of Higher Order. 9.7. Boundary Value Problem of LMDE. 9.8. Trigonometric and Hyperbolic Matrix Functions. 9.9. Conclusion.

最近チェックした商品