初等代数教育<br>Algebra in the Early Grades (Studies in Mathematical Thinking and Learning Series)

個数:
電子版価格
¥16,173
  • 電子版あり

初等代数教育
Algebra in the Early Grades (Studies in Mathematical Thinking and Learning Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 552 p.
  • 言語 ENG
  • 商品コード 9780805854725
  • DDC分類 372.7044

基本説明

Aims to bridge the worlds of research, practice, design, and theory for educators, researchers, students, policy makers, and curriculum developers in mathematics education.

Full Description

This volume is the first to offer a comprehensive, research-based, multi-faceted look at issues in early algebra. In recent years, the National Council for Teachers of Mathematics has recommended that algebra become a strand flowing throughout the K-12 curriculum, and the 2003 RAND Mathematics Study Panel has recommended that algebra be "the initial topical choice for focused and coordinated research and development [in K-12 mathematics]."

This book provides a rationale for a stronger and more sustained approach to algebra in school, as well as concrete examples of how algebraic reasoning may be developed in the early grades. It is organized around three themes:

The Nature of Early Algebra
Students' Capacity for Algebraic Thinking
Issues of Implementation: Taking Early Algebra to the Classrooms.

The contributors to this landmark volume have been at the forefront of an effort to integrate algebra into the existing early grades mathematics curriculum. They include scholars who have been developing the conceptual foundations for such changes as well as researchers and developers who have led empirical investigations in school settings.

Algebra in the Early Grades aims to bridge the worlds of research, practice, design, and theory for educators, researchers, students, policy makers, and curriculum developers in mathematics education.

Contents

Contents: Preface. Skeptic's Guide to Algebra in the Early Grades. Part I:The Nature of Early Algebra.J.J. Kaput, What Is Algebra? What Is Algebraic Reasoning? J.J. Kaput, M.L. Blanton, L.M. Armella, Algebra From a Symbolization Point of View. J. Mason, Making Use of Children's Powers to Produce Algebraic Thinking. J.P. Smith III, P.W. Thompson, Quantitative Reasoning and the Development of Algebraic Reasoning. E. Smith, Representational Thinking as a Framework for Introducing Functions in the Elementary Curriculum. Part II:Students' Capacity for Algebraic Thinking. V. Bastable, D, Schifter, Classroom Stories: Examples of Elementary Students Engaged in Early Algebra. C. Tierney, S. Monk, Children's Reasoning About Change Over Time. N. Mark-Zigdon, D. Tirosh, What Is a Legitimate Arithmetic Number Sentence? The Case of Kindergarten and First Grade Children. T. Boester, R. Lehrer, Visualizing Algebraic Reasoning. D.W. Carraher, A.D. Schliemann, J.L. Schwartz, Early Algebra Is Not the Same as Algebra Early. B.M. Brizuela, D. Earnest, Multiple Notational Systems and Algebraic Understandings: The Case of the "Best Deal" Problem. I. Peled, D.W. Carraher, Signed Numbers and Algebraic Thinking. Part III:Issues of Implementation: Taking Early Algebra to the Classrooms. M.L. Franke, T.P. Carpenter, D. Battey, Content Matters: The Case of Algebra Reasoning in Teacher Professional Development. M.L. Blanton, J.J. Kaput, Building District Capacity for Teacher Development in Algebraic Reasoning. B. Dougherty, Measure Up: A Quantitative View of Early Algebra. D. Schifter, S. Monk, S.J. Russell, V. Bastable, Early Algebra: What Does Understanding the Laws of Arithmetic Mean in the Elementary Grades? P. Goldenberg, N. Shteingold, Early Algebra: The MW Perspective. Afterword: A. Schoenfeld, Early Algebra as Mathematical Sense-Making.

最近チェックした商品