Nonlinear Optimization in Finite Dimensions : Morse Theory, Chebyshev Approximation, Transversality, Flows, Parametric Aspects (Nonconvex Optimization and Its Applications 47) (2000. 520 S. 240 mm)

個数:

Nonlinear Optimization in Finite Dimensions : Morse Theory, Chebyshev Approximation, Transversality, Flows, Parametric Aspects (Nonconvex Optimization and Its Applications 47) (2000. 520 S. 240 mm)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 510 p.
  • 言語 ENG
  • 商品コード 9780792365617

Full Description

At the heart of the topology of global optimization lies Morse Theory: The study of the behaviour of lower level sets of functions as the level varies. Roughly speaking, the topology of lower level sets only may change when passing a level which corresponds to a stationary point (or Karush-Kuhn­ Tucker point). We study elements of Morse Theory, both in the unconstrained and constrained case. Special attention is paid to the degree of differentiabil­ ity of the functions under consideration. The reader will become motivated to discuss the possible shapes and forms of functions that may possibly arise within a given problem framework. In a separate chapter we show how certain ideas may be carried over to nonsmooth items, such as problems of Chebyshev approximation type. We made this choice in order to show that a good under­ standing of regular smooth problems may lead to a straightforward treatment of "just" continuous problems by means of suitable perturbation techniques, taking a priori nonsmoothness into account. Moreover, we make a focal point analysis in order to emphasize the difference between inner product norms and, for example, the maximum norm. Then, specific tools from algebraic topol­ ogy, in particular homology theory, are treated in some detail. However, this development is carried out only as far as it is needed to understand the relation between critical points of a function on a manifold with structured boundary. Then, we pay attention to three important subjects in nonlinear optimization.

Contents

Preface. 1. Introduction. 2. Morse theory (without constraints). 3. Morse theory (with constraints). 4. Chebyshev approximation, focal points. 5. Homology, Morse relations. 6. Stability of optimization problems. 7. Transversality. 8. Gradient Flows. 9. Newton flows. 10. Parametric aspects. References. Index. List of symbols.