Vanadium Compounds : Biochemical and Therapeutic Applications (Developments in Molecular and Cellular Biochemistry)

個数:

Vanadium Compounds : Biochemical and Therapeutic Applications (Developments in Molecular and Cellular Biochemistry)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 244 p.
  • 言語 ENG
  • 商品コード 9780792337621
  • DDC分類 612.01524

基本説明

Reprinted from Molecular and Cellular Biochemistry.

Full Description

In vitro and animal studies show that vanadate and other Because most cellular components contain hydroxyl and/or vanadium compounds increase glucose transport activity and phosphate groups, vanadate reacts as shown in eq. 1, and 2 normalize glucose metabolism [1-5]. Furthermore, these with a variety of metabolites. For example, the reaction of insulin-mimetic compounds can be administered orally. Vana- vanadate with the 2'-hydroxyl group of the cofactor NAD date enhances the phosphoprotein formation which is attrib- generates an NADP analog, NADV (path b) [22]. NADV is uted to either the activation of protein kinases or inhibition an excellent cofactor for enzymes such as glucose-6-phos- of protein phosphatases. Despite the interest in document- phate dehydrogenase, 6-phosphogluconate dehydrogenase, ing the effects of vanadate on protein kinases, most reports and alcohol dehydrogenase [22]. The presence ofNADV have used indirect methods and studies with purified kinases could affect the levels of reducing equivalents in the cell, im- show weak, if any, interaction of vanadate with kinases as portant in maintaining a normal glucose metabolism.
This a group of enzymes (reviewed in Refs. [6-8]). Vanadate type of mechanism is distinct from the vanadate-induced interacts potently with phosphatases and the inhibition is NADH oxidation by plasma membranes [23]. Organic attributed to a five-coordinate vanadate complex which vanadates have been shown to substitute for organic phos- mimics the transition state of the phosphate ester hydroly- phates in many of the enzymes related to glucose metabolism sis reaction (reviewed in Refs. [7,9]).

Contents

I: Chemistry.- The chemistry of peroxovanadium compounds relevant to insulin mimesis.- Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents.- Peroxo heteroligand vanadates(V): Synthesis, spectra-structure relationships, and stability toward decomposition.- Chemically and photochemically initiated DNA cleavage by an insulin-mimetic bisperoxovanadium complex.- II: Biochemical and physiological studies.- Insulin-like actions of vanadate are mediated in an insulin-receptor-independent manner via non-receptor protein tyrosine kinases and protein phosphotyrosine phosphatases.- Peroxovanadium compounds: Biological actions and mechanism of insulin-mimesis.- Unique and selective mitogenic effects of vanadate on SV40-transformed cells.- Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases.- Protective effect of vanadate on oxyradical-induced changes in isolated perfused heart.- In vivo effects of vanadate on hepatic glycogen metabolizing and lipogenic enzymes in insulin-dependent and insulin-resistant diabetic animals.- The relationship between insulin and vanadium metabolism in insulin target tissues.- Modulation of insulin action by vanadate: Evidence of a role for phosphotyrosine phosphatase activity to alter cellular signaling.- Reversal of defective G-proteins and adenylyl cyclase/cAMP signal transduction in diabetic rats by vanadyl sulphate therapy.- Effects of vanadate on the expression of genes involved in fuel homeostasis in animal models of Type I and Type II diabetes.- Decrease in protein tyrosine phosphatase activities in vanadate-treated obese Zucker (fa/fa) rat liver.- Evidence for selective effects of vanadium on adipose cell metabolism involving actions on cAMP-dependent proteinkinase.- The enhancement by pervanadate of tyrosine phosphorylation on prostatic proteins occurs through the inhibition of membrane-associated tyrosine phosphatases.- Contractile effects of vanadate on aorta rings from virgin and pregnant rats.- In vivo modulation of N-myristoyltransferase activity by orthovanadate.- Regulation and control of glucose overutilization in erythrocytes by vanadate.- In vitro and in vivo antineoplastic effects of ortrovanadate.- Membrane — vanadium interaction: A toxicokinetic evaluation.- III: Potential use in therapy and toxicological studies.- Increased potency of vanadium using organic ligands.- In vivo effects of peroxovanadium compounds in BB rats.- Long-term antidiabetic activity of vanadyl after treatment withdrawal: Restoration of insulin secretion?.- Long-term correction of STZ-diabetic rats after short-term i.p. VOSO4 treatment: Persistence of insulin secreting capacities assessed by isolated pancreas studies.- Antihypertensive effects of vanadium compounds in hyperinsulinemic, hypertensive rats.- Vanadate induces normolipidemia and a reduction in the levels of hepatic iipogenic enzymes in obese Zucker rat.- In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus.- Toxicology of vanadium compounds in diabetic rats: The action of chelating agents on vanadium accumulation.- Index to Volume 153.

最近チェックした商品