R for Microsoft Excel Users : Making the Transition for Statistical Analysis

個数:
  • ポイントキャンペーン

R for Microsoft Excel Users : Making the Transition for Statistical Analysis

  • ウェブストア価格 ¥8,728(本体¥7,935)
  • Que Corporation,U.S.(2017/03発売)
  • 外貨定価 UK£ 29.49
  • 【ウェブストア限定】ブラックフライデーポイント5倍対象商品(~11/24)※店舗受取は対象外
  • ポイント 395pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9780789757852
  • DDC分類 005.55

Full Description

 Microsoft Excel can perform many statistical analyses, but thousands of business users and analysts are now reaching its limits. R, in contrast, can perform virtually any imaginable analysis—if you can get over its learning curve. In R for Microsoft® Excel Users, Conrad Carlberg shows exactly how to get the most from both programs.

 

Drawing on his immense experience helping organizations apply statistical methods, Carlberg reviews how to perform key tasks in Excel, and then guides you through reaching the same outcome in R—including which packages to install and how to access them. Carlberg offers expert advice on when and how to use Excel, when and how to use R instead, and the strengths and weaknesses of each tool.

 

Writing in clear, understandable English, Carlberg combines essential statistical theory with hands-on examples reflecting real-world challenges. By the time you've finished, you'll be comfortable using R to solve a wide spectrum of problems—including many you just couldn't handle with Excel.

 

• Smoothly transition to R and its radically different user interface

• Leverage the R community's immense library of packages

• Efficiently move data between Excel and R

• Use R's DescTools for descriptive statistics, including bivariate analyses

• Perform regression analysis and statistical inference in R and Excel

• Analyze variance and covariance, including single-factor and factorial ANOVA

• Use R's mlogit package and glm function for Solver-style logistic regression

• Analyze time series and principal components with R and Excel

Contents

1 Making the Transition
2 Descriptive Statistics
3 Regression Analysis in Excel and R
4 Analysis of Variance and Covariance in Excel and R
5 Logistic Regression in Excel and R
6 Principal Components Analysis

最近チェックした商品