一般線形モデル入門<br>An Introduction to Generalized Linear Models (Quantitative Applications in the Social Sciences)

個数:
電子版価格
¥2,745
  • 電子版あり
  • ポイントキャンペーン

一般線形モデル入門
An Introduction to Generalized Linear Models (Quantitative Applications in the Social Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 88 p.
  • 言語 ENG
  • 商品コード 9780761920847
  • DDC分類 300.72

Full Description

Do you have data that is not normally distributed and don't know how to analyze it using generalized linear models (GLM)? Beginning with a discussion of fundamental statistical modeling concepts in a multiple regression framework, the authors extend these concepts to GLM (including Poisson regression. logistic regression, and proportional hazards models) and demonstrate the similarity of various regression models to GLM. Each procedure is illustrated using real life data sets, and the computer instructions and results will be presented for each example. Throughout the book, there is an emphasis on link functions and error distribution and how the model specifications translate into likelihood functions that can, through maximum likelihood estimation be used to estimate the regression parameters and their associated standard errors. This book provides readers with basic modeling principles that are applicable to a wide variety of situations.

Key Features:
- Provides an accessible but thorough introduction to GLM, exponential family distribution, and maximum likelihood estimation

- Includes discussion on checking model adequacy and description on how to use SAS to fit GLM

- Describes the connection between survival analysis and GLM

 This book is an ideal text for social science researchers who do not have a strong statistical background, but would like to learn more advanced techniques having taken an introductory course covering regression analysis.

Contents

List of Figures and Tables
Series Editor's Introduction
Acknowledgments
1. Generalized Linear Models
2. Some Basic Modeling Concepts
Categorical Independent Variables
Essential Components of Regression Modeling
3. Classical Multiple Regression Model
Assumptions and Modeling Approach
Results of Regression Analysis
Multiple Correlation
Testing Hypotheses
4. Fundamentals of Generalized Linear Modeling
Exponential Family of Distributions
Classical Normal Regression
Logistic Regression
Poisson Regression
Proportional Hazards Survival Model
5. Maximum Likelihood Estimation
6. Deviance and Goodness of Fit
Using Deviances to Test Statistical Hypotheses
Goodness of Fit
Assessing Goodness of Fit by Residual Analysis
7. Logistic Regression
Example of Logistic Regression
8. Poisson Regression
Example of Poisson Regression Model
9. Survival Analysis
Survival Time Distributions
Exponential Survival Model
Example of Exponential Survival Model
Conclusions
Appendix
References
Index
About the Authors

最近チェックした商品