Handbook of Cubik Math

個数:

Handbook of Cubik Math

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 191 p.
  • 言語 ENG
  • 商品コード 9780718892098
  • DDC分類 512.2

Full Description

In thirty years, Rubik's cube, invented by Erno Rubik, has established itself as a neverending source of delight, frustration and intellectual stimulation to children and adults alike. There is a large literature on the subject, but one of the few books to have established themselves as offering a serious contribution to the subject is Alexander H. Frey's and David Singmaster's Handbook of Cubik Math, first published in 1982.

Frey and Singmaster were the first to offer an elegant mathematical solution to the cube, doing it in a form that enables readers to understand the processes that have been undertaken. As a result the book has proved readily accessible to generations of high-school maths students and more advanced college students of algebra.

The solution is intuitive, and does not require memorisation of formulae. The authors demonstrate how movements of the cube exemplify the fascinating but abstract field of mathematics known as group theory. Using the cube as a model they make comprehensible and concrete the hard-to-understand ideas of group theory. Their hypothesis that the maximum number of moves required for 'God's Algorithm' was in the low twenties was proved correct in 2008 by Tomas Rokicki, who showed that it was twenty-two.

In addition to showing how to solve Rubik's cube, the authors explain the theory involved, and its application to similar puzzles. They also show how the cube provides a physical example for many mathematical concepts where such examples are scarce, and the book therefore provides a useful teaching aid.

Contents

Preface

1. Introduction
2. A Cubik Orientation
3. Restoring the Cube
4. The What, Why, and How of Cube Movements
5. Improved Restoration Processes
6. The Cube Group and Subgroups
7. Permutation Structures and the Order of Groups
8. Advanced Restoration Methods
9. Epilogue

A. A Small Catalogue of Processes
B. Solutions to Exercises
Index

最近チェックした商品