2次超曲面に対するフーリエ制限定理<br>Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra (Annals of Mathematics Studies)

個数:

2次超曲面に対するフーリエ制限定理
Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra (Annals of Mathematics Studies)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9780691170558
  • DDC分類 516.156

Full Description

This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.
They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.

Contents

*Frontmatter, pg. i*Contents, pg. vii*Chapter 1. Introduction, pg. 1*Chapter 2. Auxiliary Results, pg. 29*Chapter 3. Reduction to Restriction Estimates near the Principal Root Jet, pg. 50*Chapter 4. Restriction for Surfaces with Linear Height below 2, pg. 57*Chapter 5. Improved Estimates by Means of Airy-Type Analysis, pg. 75*Chapter 6. The Case When hlin(PHI) => 2: Preparatory Results, pg. 105*Chapter 7. How to Go beyond the Case hlin(PHI) => 5, pg. 131*Chapter 8. The Remaining Cases Where m = 2 and B = 3 or B = 4, pg. 181*Chapter 9. Proofs of Propositions 1.7 and 1.17, pg. 244*Bibliography, pg. 251*Index, pg. 257

最近チェックした商品