ベンフォードの法則入門<br>An Introduction to Benford's Law

個数:

ベンフォードの法則入門
An Introduction to Benford's Law

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9780691163062
  • DDC分類 511

Full Description

This book provides the first comprehensive treatment of Benford's law, the surprising logarithmic distribution of significant digits discovered in the late nineteenth century. Establishing the mathematical and statistical principles that underpin this intriguing phenomenon, the text combines up-to-date theoretical results with overviews of the law's colorful history, rapidly growing body of empirical evidence, and wide range of applications. An Introduction to Benford's Law begins with basic facts about significant digits, Benford functions, sequences, and random variables, including tools from the theory of uniform distribution. After introducing the scale-, base-, and sum-invariance characterizations of the law, the book develops the significant-digit properties of both deterministic and stochastic processes, such as iterations of functions, powers of matrices, differential equations, and products, powers, and mixtures of random variables. Two concluding chapters survey the finitely additive theory and the flourishing applications of Benford's law. Carefully selected diagrams, tables, and close to 150 examples illuminate the main concepts throughout.
The text includes many open problems, in addition to dozens of new basic theorems and all the main references. A distinguishing feature is the emphasis on the surprising ubiquity and robustness of the significant-digit law. This text can serve as both a primary reference and a basis for seminars and courses.

Contents

Preface vii 1 Introduction 1 1.1 History 3 1.2 Empirical evidence 4 1.3 Early explanations 6 1.4 Mathematical framework 7 2 Significant Digits and the Significand 11 2.1 Significant digits 11 2.2 The significand 12 2.3 The significand sigma-algebra 14 3 The Benford Property 22 3.1 Benford sequences 23 3.2 Benford functions 28 3.3 Benford distributions and random variables 29 4 The Uniform Distribution and Benford's Law 43 4.1 Uniform distribution characterization of Benford's law 43 4.2 Uniform distribution of sequences and functions 46 4.3 Uniform distribution of random variables 54 5 Scale-, Base-, and Sum-Invariance 63 5.1 The scale-invariance property 63 5.2 The base-invariance property 74 5.3 The sum-invariance property 80 6 Real-valued Deterministic Processes 90 6.1 Iteration of functions 90 6.2 Sequences with polynomial growth 93 6.3 Sequences with exponential growth 97 6.4 Sequences with super-exponential growth 101 6.5 An application to Newton's method 111 6.6 Time-varying systems 116 6.7 Chaotic systems: Two examples 124 6.8 Differential equations 127 7 Multi-dimensional Linear Processes 135 7.1 Linear processes, observables, and difference equations 135 7.2 Nonnegative matrices 139 7.3 General matrices 145 7.4 An application to Markov chains 162 7.5 Linear difference equations 165 7.6 Linear differential equations 170 8 Real-valued Random Processes 180 8.1 Convergence of random variables to Benford's law 180 8.2 Powers, products, and sums of random variables 182 8.3 Mixtures of distributions 202 8.4 Random maps 213 9 Finitely Additive Probability and Benford's Law 216 9.1 Finitely additive probabilities 217 9.2 Finitely additive Benford probabilities 219 10 Applications of Benford's Law 223 10.1 Fraud detection 224 10.2 Detection of natural phenomena 225 10.3 Diagnostics and design 226 10.4 Computations and Computer Science 228 10.5 Pedagogical tool 230 List of Symbols 231 Bibliography 234 Index 245

最近チェックした商品