Non-Archimedean Tame Topology and Stably Dominated Types (Annals of Mathematics Studies)

個数:

Non-Archimedean Tame Topology and Stably Dominated Types (Annals of Mathematics Studies)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 232 p.
  • 言語 ENG
  • 商品コード 9780691161693
  • DDC分類 514

Full Description

Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods.
No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections.

Contents

*Frontmatter, pg. i*Contents, pg. v*1. Introduction, pg. 1*2. Preliminaries, pg. 8*3. The space v of stably dominated types, pg. 37*4. Definable compactness, pg. 57*5. A closer look at the stable completion, pg. 70*6. GAMMA-internal spaces, pg. 76*7. Curves, pg. 92*8. Strongly stably dominated points, pg. 104*9. Specializations and ACV2F, pg. 119*10. Continuity of homotopies, pg. 142*11. The main theorem, pg. 154*12. The smooth case, pg. 177*13. An equivalence of categories, pg. 183*14. Applications to the topology of Berkovich spaces, pg. 187*Bibliography, pg. 207*Index, pg. 211*List of notations, pg. 215

最近チェックした商品