志村曲線のグロス=ザギエ公式<br>The Gross-Zagier Formula on Shimura Curves (Annals of Mathematics Studies)

個数:

志村曲線のグロス=ザギエ公式
The Gross-Zagier Formula on Shimura Curves (Annals of Mathematics Studies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 272 p.
  • 言語 ENG
  • 商品コード 9780691155920
  • DDC分類 516.352

基本説明

This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations.

Full Description

This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas. The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.

Contents

Preface vii 1 Introduction and Statement of Main Results 1 1.1 Gross-Zagier formula on modular curves ... 1 1.2 Shimura curves and abelian varieties ... 2 1.3 CM points and Gross-Zagier formula ... 6 1.4 Waldspurger formula ... 9 1.5 Plan of the proof ... 12 1.6 Notation and terminology ... 20 2 Weil Representation and Waldspurger Formula 28 2.1 Weil representation ... 28 2.2 Shimizu lifting ... 36 2.3 Integral representations of the L-function ... 40 2.4 Proof of Waldspurger formula ... 43 2.5 Incoherent Eisenstein series ... 44 3 Mordell-Weil Groups and Generating Series 58 3.1 Basics on Shimura curves ... 58 3.2 Abelian varieties parametrized by Shimura curves ... 68 3.3 Main theorem in terms of projectors ... 83 3.4 The generating series ... 91 3.5 Geometric kernel ... 97 3.6 Analytic kernel and kernel identity ... 100 4 Trace of the Generating Series 106 4.1 Discrete series at infinite places ... 106 4.2 Modularity of the generating series ... 110 4.3 Degree of the generating series ... 117 4.4 The trace identity ... 122 4.5 Pull-back formula: compact case ... 128 4.6 Pull-back formula: non-compact case ... 138 4.7 Interpretation: non-compact case ... 153 5 Assumptions on the Schwartz Function 171 5.1 Restating the kernel identity ... 171 5.2 The assumptions and basic properties ... 174 5.3 Degenerate Schwartz functions I ... 178 5.4 Degenerate Schwartz functions II ... 181 6 Derivative of the Analytic Kernel 184 6.1 Decomposition of the derivative ... 184 6.2 Non-archimedean components ... 191 6.3 Archimedean components ... 196 6.4 Holomorphic projection ... 197 6.5 Holomorphic kernel function ... 202 7 Decomposition of the Geometric Kernel 206 7.1 Neron-Tate height ... 207 7.2 Decomposition of the height series ... 216 7.3 Vanishing of the contribution of the Hodge classes ... 219 7.4 The goal of the next chapter ... 223 8 Local Heights of CM Points 230 8.1 Archimedean case ... 230 8.2 Supersingular case ... 233 8.3 Superspecial case ... 239 8.4 Ordinary case ... 244 8.5 The j -part ... 245 Bibliography 251 Index 255

最近チェックした商品