Weyl Group Multiple Dirichlet Series : Type a Combinatorial Theory (Annals of Mathematics Studies)

個数:

Weyl Group Multiple Dirichlet Series : Type a Combinatorial Theory (Annals of Mathematics Studies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 184 p.
  • 言語 ENG
  • 商品コード 9780691150666
  • DDC分類 515.243

Full Description

Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow.
Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished. The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang-Baxter equation.

Contents

*FrontMatter, pg. i*Contents, pg. v*Preface, pg. vii*Chapter One. Type A Weyl Group Multiple Dirichlet Series, pg. 1*Chapter Two. Crystals and Gelfand-Tsetlin Patterns, pg. 10*Chapter Three. Duality, pg. 22*Chapter Four. Whittaker Functions, pg. 26*Chapter Five. Tokuyama's Theorem, pg. 31*Chapter Six. Outline of the Proof, pg. 36*Chapter Seven. Statement B Implies Statement A, pg. 51*Chapter Eight. Cartoons, pg. 54*Chapter Nine. Snakes, pg. 58*Chapter Ten. Noncritical Resonances, pg. 64*Chapter Eleven. Types, pg. 67*Chapter Twelve. Knowability, pg. 74*Chapter Thirteen. The Reduction to Statement D, pg. 77*Chapter Fourteen. Statement E Implies Statement D, pg. 87*Chapter Fifteen. Evaluation of LAMBDAGAMMA and LAMBDADELTA, and Statement G, pg. 89*Chapter Sixteen. Concurrence, pg. 96*Chapter Seventeen. Conclusion of the Proof, pg. 104*Chapter Eighteen. Statement B and Crystal Graphs, pg. 108*Chapter Nineteen. Statement B and the Yang-Baxter Equation, pg. 115*Chapter Twenty. Crystals and p-adic Integration, pg. 132*Bibliography, pg. 143*Notation, pg. 149*Index, pg. 155

最近チェックした商品