Log-Gases and Random Matrices (LMS-34) (London Mathematical Society Monographs)

個数:

Log-Gases and Random Matrices (LMS-34) (London Mathematical Society Monographs)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 808 p.
  • 言語 ENG
  • 商品コード 9780691128290
  • DDC分類 519.2

基本説明

Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. This book gives a comprehensive account of these developments as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials.

Full Description

Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painleve transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory.
This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.

Contents

*FrontMatter, pg. i*Preface, pg. v*Contents, pg. xi*Chapter One. Gaussian Matrix Ensembles, pg. 1*Chapter Two. Circular Ensembles, pg. 53*Chapter Three. Laguerre And Jacobi Ensembles, pg. 85*Chapter Four. The Selberg Integral, pg. 133*Chapter Five. Correlation functions at ss = 2, pg. 186*Chapter Six. Correlation Functions At ss= 1 And 4, pg. 236*Chapter Seven. Scaled limits at ss = 1, 2 and 4, pg. 283*Chapter Eight. Eigenvalue probabilities - Painleve systems approach, pg. 328*Chapter Nine. Eigenvalue probabilities- Fredholm determinant approach, pg. 380*Chapter Ten. Lattice paths and growth models, pg. 440*Chapter Eleven. The Calogero-Sutherland model, pg. 505*Chapter Twelve. Jack polynomials, pg. 543*Chapter Thirteen. Correlations for general ss, pg. 592*Chapter Fourteen. Fluctuation formulas and universal behavior of correlations, pg. 658*Chapter Fifteen. The two-dimensional one-component plasma, pg. 701*Bibliography, pg. 765*Index, pg. 785

最近チェックした商品