Dynamics in One Complex Variable : Third Edition (Annals of Mathematics Studies) (3RD)

個数:

Dynamics in One Complex Variable : Third Edition (Annals of Mathematics Studies) (3RD)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9780691124889
  • DDC分類 515.93

Full Description

This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattes map has been made more inclusive, and the ecalle-Voronin theory of parabolic points is described. The residu iteratif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.

Contents

*FrontMatter, pg. i*Table Of Contents, pg. v*List of Figures, pg. vi*Preface to the Third Edition, pg. vii*Chronological Table, pg. viii*Riemann Surfaces, pg. 1*Iterated Holomorphic Maps, pg. 39*Local Fixed Point Theory, pg. 76*Periodic Points: Global Theory, pg. 142*Structure of the Fatou Set, pg. 161*Using the Fatou Set to Study the Julia Set, pg. 174*Appendix A. Theorems from Classical Analysis, pg. 219*Appendix B. Length-Area-Modulus Inequalities, pg. 226*Appendix C. Rotations, Continued Fractions, and Rational Approximation, pg. 234*Appendix D. Two or More Complex Variables, pg. 246*Appendix E. Branched Coverings and Orbifolds, pg. 254*Appendix F. No Wandering Fatou Components, pg. 259*Appendix G. Parameter Spaces, pg. 266*Appendix H. Computer Graphics and Effective Computation, pg. 271*References, pg. 277*Index, pg. 293

最近チェックした商品