群論:リー群、トラック、例外群<br>Group Theory : Birdtracks, Lie's, and Exceptional Groups -- Hardback

個数:

群論:リー群、トラック、例外群
Group Theory : Birdtracks, Lie's, and Exceptional Groups -- Hardback

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 280 p./サイズ 4,000 birdtrack diagrams.
  • 言語 ENG
  • 商品コード 9780691118369
  • DDC分類 512.2

基本説明

The first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional.

Full Description


If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdtracks" notation inspired by the Feynman diagrams of quantum field theory. Notably, invariant tensor diagrams replace algebraic reasoning in carrying out all group-theoretic computations. The diagrammatic approach is particularly effective in evaluating complicated coefficients and group weights, and revealing symmetries hidden by conventional algebraic or index notations. The book covers most topics needed in applications from this new perspective: permutations, Young projection operators, spinorial representations, Casimir operators, and Dynkin indices.Beyond this well-traveled territory, more exotic vistas open up, such as "negative dimensional" relations between various groups and their representations. The most intriguing result of classifying primitive invariants is the emergence of all exceptional Lie groups in a single family, and the attendant pattern of exceptional and classical Lie groups, the so-called Magic Triangle. Written in a lively and personable style, the book is aimed at researchers and graduate students in theoretical physics and mathematics.

Contents

Acknowledgments xi Chapter 1Chapter 3: Invariants and reducibility 14 Chapter 4: Diagrammatic notation 27 Chapter 5: Recouplings 42 Chapter 6: Permutations 49 Chapter 7: Casimir operators 60 Chapter 8: Group integrals 76 Chapter 9: Unitary groups 82 Chapter 10: Orthogonal groups 118 Chapter 11: Spinors 132 Chapter 12: Symplectic groups 148 Chapter 13: Negative dimensions 151 Chapter 14: Spinors' symplectic sisters 155 Chapter 15: SU(n) family of invariance groups 162 Chapter 16: G2 family of invariance groups 170 Chapter 17: E8 family of invariance groups 180 Chapter 18: E6 family of invariance groups 190 Chapter 19: F4 family of invariance groups 210 Chapter 20: E7 family and its negative-dimensional cousins 218 Chapter 21: Exceptional magic 229 Epilogue 235 Appendix A.Recursive decomposition 237 Appendix B.Properties of Young projections 239 H. Elvang and P. Cvitanovi'c B.1 Uniqueness of Young projection operators 239 B.2 Orthogonality 240 B.3 Normalization and completeness 240 B.4 Dimension formula 241 Bibliography 243 Index 259

最近チェックした商品