Nilpotence and Periodicity in Stable Homotopy Theory (Annals of Mathematics Studies)

個数:

Nilpotence and Periodicity in Stable Homotopy Theory (Annals of Mathematics Studies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 224 p.
  • 言語 ENG
  • 商品コード 9780691025728
  • DDC分類 514

基本説明

Describes some major advances in algebraic topology, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977.

Full Description

Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.

Contents

*Frontmatter, pg. i*Contents, pg. vii*Preface, pg. xi*Introduction, pg. xiii*Chapter 1. The main theorems, pg. 1*Chapter 2. Homotopy groups and the chromatic filtration, pg. 11*Chapter 3. MU-theory and formal group laws, pg. 25*Chapter 4. Morava's orbit picture and Morava stabilizer groups, pg. 37*Chapter 5. The thick subcategory theorem, pg. 45*Chapter 6. The periodicity theorem, pg. 53*Chapter 7. Bousfield localization and equivalence, pg. 69*Chapter 8. The proofs of the localization, smash product and chromatic convergence theorems, pg. 81*Chapter 9. The proof of the nilpotence theorem, pg. 99*Appendix A. Some tools from homotopy theory, pg. 119*Appendix B. Complex bordism and BP-theory, pg. 145*Appendix C. Some idempotents associated with the symmetric group, pg. 183*Bibliography, pg. 195*Index, pg. 205

最近チェックした商品