フィルタリングとシステム同定:最小二乗アプローチ<br>Filtering and System Identification : A Least Squares Approach

個数:
電子版価格
¥8,665
  • 電子版あり

フィルタリングとシステム同定:最小二乗アプローチ
Filtering and System Identification : A Least Squares Approach

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 422 p.
  • 言語 ENG
  • 商品コード 9780521875127
  • DDC分類 003.1

基本説明

電子工学、機械工学、航空宇宙工学の分野の院生や研究者対象。
Discusses the design of reliable numerical methods to retrieve missing information in models of complex systems.

Full Description

Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.

Contents

Preface; 1. Introduction; 2. Linear algebra; 3. Discrete-time signals and systems; 4. Random variables and signals; 5. Kalman filtering; 6. Estimation of spectra and frequency response functions; 7. Output-error parametric model estimation; 8. Prediction-error parametric model estimation; 9. Subspace model identification; 10. The system identification cycle; Notation and symbols; List of abbreviations; References; Index.

最近チェックした商品