Saddlepoint Approximations with Applications (Cambridge Series in Statistical and Probabilistic Mathematics)

個数:

Saddlepoint Approximations with Applications (Cambridge Series in Statistical and Probabilistic Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 578 p./サイズ 283 exercises
  • 言語 ENG
  • 商品コード 9780521872508
  • DDC分類 511.4

Full Description

Modern statistical methods use complex, sophisticated models that can lead to intractable computations. Saddlepoint approximations can be the answer. Written from the user's point of view, this book explains in clear language how such approximate probability computations are made, taking readers from the very beginnings to current applications. The core material is presented in chapters 1-6 at an elementary mathematical level. Chapters 7-9 then give a highly readable account of higher-order asymptotic inference. Later chapters address areas where saddlepoint methods have had substantial impact: multivariate testing, stochastic systems and applied probability, bootstrap implementation in the transform domain, and Bayesian computation and inference. No previous background in the area is required. Data examples from real applications demonstrate the practical value of the methods. Ideal for graduate students and researchers in statistics, biostatistics, electrical engineering, econometrics, and applied mathematics, this is both an entry-level text and a valuable reference.

Contents

Preface; 1. Fundamental approximations; 2. Properties and derivatives; 3. Multivariate densities; 4. Conditional densities and distribution functions; 5. Exponential families and tilted distributions; 6. Further exponential family examples and theory; 7. Probability computation with p*; 8. Probabilities with r*-type approximations; 9. Nuisance parameters; 10. Sequential saddlepoint applications; 11. Applications to multivariate testing; 12. Ratios and roots of estimating equations; 13. First passage and time to event distributions; 14. Bootstrapping in the transform domain; 15. Bayesian applications; 16. Non-normal bases; References; Index.

最近チェックした商品