群の対称生成:散在型有限単純群<br>Symmetric Generation of Groups : With Applications to many of the Sporadic Finite Simple Groups (Encyclopedia of Mathematics and its Applications)

個数:

群の対称生成:散在型有限単純群
Symmetric Generation of Groups : With Applications to many of the Sporadic Finite Simple Groups (Encyclopedia of Mathematics and its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 332 p./サイズ 49 exercises
  • 言語 ENG
  • 商品コード 9780521857215
  • DDC分類 512.2

Full Description

Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups. But gaining familiarity with these groups presents problems for two reasons. Firstly, they were discovered in many different ways, so to understand their constructions in depth one needs to study lots of different techniques. Secondly, since each of them is in a sense recording some exceptional symmetry in spaces of certain dimensions, they are by their nature highly complicated objects with a rich underlying combinatorial structure. Motivated by initial results which showed that the Mathieu groups can be generated by highly symmetrical sets of elements, which themselves have a natural geometric definition, the author develops from scratch the notion of symmetric generation. He exploits this technique by using it to define and construct many of the sporadic simple groups including all the Janko groups and the Higman-Sims group. For researchers and postgraduates.

Contents

Preface; Acknowledgements; Part I. Motivation: 1. The Mathieu group M12; 2. The Mathieu group M24; Part II. Involutory Symmetric Generators: 3. The progenitor; 4. Classical examples; 5. Sporadic simple groups; Part III. Non-involutory Symmetric Generators: 6. The progenitor; 7. Images of these progenitors.

最近チェックした商品