- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
基本説明
1985年のベストセラー"A First Course in General Relativity" by Bernard F. Schutz(0521277035)に続く、改訂・続編的テキスト。相対性理論の最新理論を追加。
Includes 368 exercises to help students grasp material. Contents - 1. The spacetime of special relativity; 2. Manifolds and coordinates; 3. Vector calculus on manifolds; 4. Tensor calculus on manifolds; 5. Special relativity revisited; 6. Electromagnetism; 7. The equivalence principle and spacetime curvature; 8. The gravitational field equations; 9. The Schwarzschild geometry; 10. Experimental tests of general relativity; 11. Schwarzschild black holes; 12. Further spherically-symmetric geometries; 13. The Kerr geometry; 14. The Friedmann-Robertson-Walker geometry; 15. Cosmological models; 16. Inflationary cosmology....
Full Description
General Relativity: An Introduction for Physicists provides a clear mathematical introduction to Einstein's theory of general relativity. It presents a wide range of applications of the theory, concentrating on its physical consequences. After reviewing the basic concepts, the authors present a clear and intuitive discussion of the mathematical background, including the necessary tools of tensor calculus and differential geometry. These tools are then used to develop the topic of special relativity and to discuss electromagnetism in Minkowski spacetime. Gravitation as spacetime curvature is then introduced and the field equations of general relativity derived. After applying the theory to a wide range of physical situations, the book concludes with a brief discussion of classical field theory and the derivation of general relativity from a variational principle. Written for advanced undergraduate and graduate students, this approachable textbook contains over 300 exercises to illuminate and extend the discussion in the text.
Contents
1. The spacetime of special relativity; 2. Manifolds and coordinates; 3. Vector calculus on manifolds; 4. Tensor calculus on manifolds; 5. Special relativity revisited; 6. Electromagnetism; 7. The equivalence principle and spacetime curvature; 8. The gravitational field equations; 9. The Schwarzschild geometry; 10. Experimental tests of general relativity; 11. Schwarzschild black holes; 12. Further spherically-symmetric geometries; 13. The Kerr geometry; 14. The Friedmann-Robertson-Walker geometry; 15. Cosmological models; 16. Inflationary cosmology; 17. Linearised general relativity; 18. Gravitational waves; 19. A variational approach to general relativity.



