Introduction to Circle Packing : The Theory of Discrete Analytic Functions

個数:

Introduction to Circle Packing : The Theory of Discrete Analytic Functions

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 370 p.
  • 言語 ENG
  • 商品コード 9780521823562
  • DDC分類 516.11

Full Description

The topic of 'circle packing' was born of the computer age but takes its inspiration and themes from core areas of classical mathematics. A circle packing is a configuration of circles having a specified pattern of tangencies, as introduced by William Thurston in 1985. This book, first published in 2005, lays out their study, from first definitions to latest theory, computations, and applications. The topic can be enjoyed for the visual appeal of the packing images - over 200 in the book - and the elegance of circle geometry, for the clean line of theory, for the deep connections to classical topics, or for the emerging applications. Circle packing has an experimental and visual character which is unique in pure mathematics, and the book exploits that to carry the reader from the very beginnings to links with complex analysis and Riemann surfaces. There are intriguing, often very accessible, open problems throughout the book and seven Appendices on subtopics of independent interest. This book lays the foundation for a topic with wide appeal and a bright future.

Contents

Part I. An Overview of Circle Packing: 1. A circle packing menagerie; 2. Circle packings in the wild; Part II. Rigidity: Maximal Packings: 3. Preliminaries: topology, combinatorics, and geometry; 4. Statement of the fundamental result; 5. Bookkeeping and monodromy; 6. Proof for combinatorial closed discs; 7. Proof for combinatorial spheres; 8. Proof for combinatorial open discs; 9. Proof for combinatorial surfaces; Part III. Flexibility: Analytic Functions: 10. The intuitive landscape; 11. Discrete analytic functions; 12. Construction tools; 13. Discrete analytic functions on the disc; 14. Discrete entire functions; 15. Discrete rational functions; 16. Discrete analytic functions on Riemann surfaces; 17. Discrete conformal structure; 18. Random walks on circle packings; Part IV: 19. Thurston's Conjecture; 20. Extending the Rodin/Sullivan theorem; 21. Approximation of analytic functions; 22. Approximation of conformal structures; 23. Applications; Appendix A. Primer on classical complex analysis; Appendix B. The ring lemma; Appendix C. Doyle spirals; Appendix D. The brooks parameter; Appendix E. Schwarz and buckyballs; Appendix F. Inversive distance packings; Appendix G. Graph embedding; Appendix H. Square grid packings; Appendix I. Experimenting with circle packings.

最近チェックした商品